Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(2): 027302    DOI: 10.1088/1674-1056/24/2/027302
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Transport mechanism of reverse surface leakage current in AlGaN/GaN high-electron mobility transistor with SiN passivation

Zheng Xue-Feng (郑雪峰)a b, Fan Shuang (范爽)a b, Chen Yong-He (陈永和)a b, Kang Di (康迪)a b, Zhang Jian-Kun (张建坤)a b, Wang Chong (王冲)a b, Mo Jiang-Hui (默江辉)c, Li Liang (李亮)c, Ma Xiao-Hua (马晓华)b, Zhang Jin-Cheng (张进成)a b, Hao Yue (郝跃)a b
a School of Microelectronics, Xidian University, Xi'an 710071, China;
b Key Laboratory of Wide Bandgap Semiconductor Materials and Devices, Xidian University, Xi'an 710071, China;
c National Key Laboratory of Application Specific Integrated Circuit (ASIC), Hebei Semiconductor Research Institute, Shijiazhuang 050051, China
Abstract  The transport mechanism of reverse surface leakage current in the AlGaN/GaN high-electron mobility transistor (HEMT) becomes one of the most important reliability issues with the downscaling of feature size. In this paper, the research results show that the reverse surface leakage current in AlGaN/GaN HEMT with SiN passivation increases with the enhancement of temperature in the range from 298 K to 423 K. Three possible transport mechanisms are proposed and examined to explain the generation of reverse surface leakage current. By comparing the experimental data with the numerical transport models, it is found that neither Fowler-Nordheim tunneling nor Frenkel-Poole emission can describe the transport of reverse surface leakage current. However, good agreement is found between the experimental data and the two-dimensional variable range hopping (2D-VRH) model. Therefore, it is concluded that the reverse surface leakage current is dominated by the electron hopping through the surface states at the barrier layer. Moreover, the activation energy of surface leakage current is extracted, which is around 0.083 eV. Finally, the SiN passivated HEMT with a high Al composition and a thin AlGaN barrier layer is also studied. It is observed that 2D-VRH still dominates the reverse surface leakage current and the activation energy is around 0.10 eV, which demonstrates that the alteration of the AlGaN barrier layer does not affect the transport mechanism of reverse surface leakage current in this paper.
Keywords:  AlGaN/GaN HEMTs      reverse surface leakage current      transport mechanism      2D-VRH  
Received:  19 September 2014      Revised:  14 November 2014      Accepted manuscript online: 
PACS:  73.40.Kp (III-V semiconductor-to-semiconductor contacts, p-n junctions, and heterojunctions)  
  73.61.Ey (III-V semiconductors)  
  78.30.Fs (III-V and II-VI semiconductors)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61334002, 61106106, and 61474091), the Opening Project of Science and Technology on Reliability Physics and Application Technology of Electronic Component Laboratory, China (Grant No. ZHD201206), the New Experiment Development Funds for Xidian University, China (Grant No. SY1213), the 111 Project, China (Grant No. B12026), the Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education Ministry, China, and the Fundamental Research Funds for the Central Universities, China (Grant No. K5051325002).
Corresponding Authors:  Zheng Xue-Feng     E-mail:  xfzheng@mail.xidian.edu.cn

Cite this article: 

Zheng Xue-Feng (郑雪峰), Fan Shuang (范爽), Chen Yong-He (陈永和), Kang Di (康迪), Zhang Jian-Kun (张建坤), Wang Chong (王冲), Mo Jiang-Hui (默江辉), Li Liang (李亮), Ma Xiao-Hua (马晓华), Zhang Jin-Cheng (张进成), Hao Yue (郝跃) Transport mechanism of reverse surface leakage current in AlGaN/GaN high-electron mobility transistor with SiN passivation 2015 Chin. Phys. B 24 027302

[1] Cai Y, Cheng Z, Yang Z, Tang C W, Lau K M and Chen K J 2007 IEEE Electron Dev. Lett. 28 328
[2] Hu G Z, Yang L, Yuan Y L, Si Q, Gao J S, Gang M J, Hua M X and Yue H 2010 Chin. Phys. Lett. 27 087302
[3] Del Alamo J A and Joh J 2009 Microelectron. Reliab. 49 1200
[4] Wang R, Cai Y and Chen K J 2009 Solid-State Electron. 53 1
[5] Marcon D, Viaene J, Favia P, Bender H, Kang X, Lenci S, S S and Decoutere S 2012 Microelectron. Reliab. 52 2188
[6] Kong X, Wei K, Liu G and Liu X 2012 Chin. Phys. Lett. 29 078502
[7] Bouzid-Driad S, Maher H, Defrance N, Hoel V, De Jaeger J C, Renvoise M and Frijlink P 2013 IEEE Electron Dev. Lett. 34 36
[8] Zhang H, Miller E J and Yu E T 2006 J. Appl. Phys. 99 023703
[9] Arslan E, Bütün S and Ozbay E 2009 Appl. Phys. Lett. 94 142106
[10] Yan D, Lu H, Cao D, Chen D, Zhang R and Zheng Y 2010 Appl. Phys. Lett. 97 153503
[11] Tan W S, Uren M J, Houston P A, Green R T, Balmer R S and Martin T 2006 IEEE Electron Dev. Lett. 27 1
[12] Kotani J, Tajima M, Kasai S and Hashizume T 2007 Appl. Phys. Lett. 91 093501
[13] Liu Z H, Ng G I, Zhou H, Arulkumaran S and Maung Y K T 2011 Appl. Phys. Lett. 98 113506
[14] Lin F, Shen B, Lu L, Xu F, Liu X and Wei K 2014 Chin. Phys. B 23 037303
[15] Rao P K, Park B, Lee S, Noh Y, Kim M and Oh J 2011 J. Appl. Phys. 110 013716
[16] Mott N F and Davis E A 1979 Electronic Porcesses in Non-Crystalline Materials (London: Clarendon Press)
[1] High power-added-efficiency AlGaN/GaN HEMTs fabricated by atomic level controlled etching
Xinchuang Zhang(张新创), Bin Hou(侯斌), Fuchun Jia(贾富春), Hao Lu(芦浩), Xuerui Niu(牛雪锐), Mei Wu(武玫), Meng Zhang(张濛), Jiale Du(杜佳乐), Ling Yang(杨凌), Xiaohua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2022, 31(2): 027301.
[2] A novel Si-rich SiN bilayer passivation with thin-barrier AlGaN/GaN HEMTs for high performance millimeter-wave applications
Zhihong Chen(陈治宏), Minhan Mi(宓珉瀚), Jielong Liu(刘捷龙), Pengfei Wang(王鹏飞), Yuwei Zhou(周雨威), Meng Zhang(张濛), Xiaohua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2022, 31(11): 117105.
[3] Sr-doping effects on conductivity, charge transport, and ferroelectricity of Ba0.7La0.3TiO3 epitaxial thin films
Qiang Li(李强), Dao Wang(王岛), Yan Zhang(张岩), Yu-Shan Li(李育珊), Ai-Hua Zhang(张爱华), Rui-Qiang Tao(陶瑞强), Zhen Fan(樊贞), Min Zeng(曾敏), Guo-Fu Zhou(周国富), Xu-Bing Lu(陆旭兵), and Jun-Ming Liu(刘俊明). Chin. Phys. B, 2021, 30(2): 027701.
[4] Impact of oxygen in electrical properties and hot-carrier stress-induced degradation of GaN high electron mobility transistors
Lixiang Chen(陈丽香), Min Ma(马敏), Jiecheng Cao(曹杰程), Jiawei Sun(孙佳惟), Miaoling Que(阙妙玲), and Yunfei Sun(孙云飞). Chin. Phys. B, 2021, 30(10): 108502.
[5] High performance lateral Schottky diodes based on quasi-degenerated Ga2O3
Yang Xu(徐阳), Xuanhu Chen(陈选虎), Liang Cheng(程亮), Fang-Fang Ren(任芳芳), Jianjun Zhou(周建军), Song Bai(柏松), Hai Lu(陆海), Shulin Gu(顾书林), Rong Zhang(张荣), Youdou Zheng(郑有炓), Jiandong Ye(叶建东). Chin. Phys. B, 2019, 28(3): 038503.
[6] Mechanism of Ti/Al/Ni/Au ohmic contacts to AlGaN/GaN heterostructures via laser annealing
Mingchen Hou(侯明辰), Gang Xie(谢刚), Kuang Sheng(盛况). Chin. Phys. B, 2019, 28(3): 037302.
[7] Theoretical analytic model for RESURF AlGaN/GaN HEMTs
Hao Wu(吴浩), Bao-Xing Duan(段宝兴), Luo-Yun Yang(杨珞云), Yin-Tang Yang(杨银堂). Chin. Phys. B, 2019, 28(2): 027302.
[8] Lithium-ion transport in inorganic solid state electrolyte
Jian Gao(高健), Yu-Sheng Zhao(赵予生), Si-Qi Shi(施思齐), Hong Li(李泓). Chin. Phys. B, 2016, 25(1): 018211.
[9] Thermoelectric properties of Sr0.61Ba0.39Nb2O6 -δ ceramics in different oxygen-reduction conditions
Li Yi (李宜), Liu Jian (刘剑), Wang Chun-Lei (王春雷), Su Wen-Bin (苏文斌), Zhu Yuan-Hu (祝元虎), Li Ji-Chao (李吉超), Mei Liang-Mo (梅良模). Chin. Phys. B, 2015, 24(4): 047201.
[10] Breakdown mechanisms in AlGaN/GaN high electron mobility transistors with different GaN channel thickness values
Ma Xiao-Hua (马晓华), Zhang Ya-Man (张亚嫚), Wang Xin-Hua (王鑫华), Yuan Ting-Ting (袁婷婷), Pang Lei (庞磊), Chen Wei-Wei (陈伟伟), Liu Xin-Yu (刘新宇). Chin. Phys. B, 2015, 24(2): 027101.
[11] Schottky forward current transport mechanisms in AlGaN/GaN HEMTs over a wide temperature range
Wu Mei (武玫), Zheng Da-Yong (郑大勇), Wang Yuan (王媛), Chen Wei-Wei (陈伟伟), Zhang Kai (张凯), Ma Xiao-Hua (马晓华), Zhang Jin-Cheng (张进成), Hao Yue (郝跃). Chin. Phys. B, 2014, 23(9): 097307.
[12] Low-leakage-current AlGaN/GaN HEMTs on Si substrates with partially Mg-doped GaN buffer layer by metal organic chemical vapor deposition
Li Ming (黎明), Wang Yong (王勇), Wong Kai-Ming (王凯明), Lau Kei-May (刘纪美). Chin. Phys. B, 2014, 23(3): 038403.
[13] Comparison of electrical characteristic between AlN/GaN and AlGaN/GaN heterostructure Schottky diodes
Lü Yuan-Jie (吕元杰), Feng Zhi-Hong (冯志红), Lin Zhao-Jun (林兆军), Gu Guo-Dong (顾国栋), Dun Shao-Bo (敦少博), Yin Jia-Yun (尹甲运), Han Ting-Ting (韩婷婷), Cai Shu-Jun (蔡树军). Chin. Phys. B, 2014, 23(2): 027101.
[14] The reliability of AlGaN/GaN high electron mobility transistors under step-electrical stresses
Ma Xiao-Hua(马晓华), Jiao Ying(焦颖), Ma Ping(马平), He Qiang(贺强), Ma Ji-Gang(马骥刚), Zhang Kai(张凯), Zhang Hui-Long(张会龙), Zhang Jin-Cheng(张进成), and Hao Yue(郝跃) . Chin. Phys. B, 2011, 20(12): 127305.
[15] MMIC LNA based novel composite-channel Al0.3Ga0.7N/Al0.05Ga 0.95N/GaN HEMTs
Cheng Zhi-Qun(程知群), Cai Yong(蔡勇), Liu Jie(刘杰), Zhou Yu-Gang(周玉刚), Lau Kei May, and Chen J. Kevin. Chin. Phys. B, 2007, 16(11): 3494-3497.
No Suggested Reading articles found!