Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(11): 116401    DOI: 10.1088/1674-1056/24/11/116401
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Carrier behavior of HgTe under high pressure revealed by Hall effect measurement

Hu Ting-Jinga b, Cui Xiao-Yana, Li Xue-Feia, Wang Jing-Shua, Lü Xiu-Meia, Wang Ling-Shenga, Yang Jing-Haia, Gao Chun-Xiaob
a Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Siping 136000, China;
b State Key Laboratory of Superhard Materials, Jilin University, Changchun 130012, China
Abstract  We investigate the carrier behavior of HgTe under high pressures up to 23 GPa using in situ Hall effect measurements. As the phase transitions from zinc blende to cinnabar, then to rock salt, and finally to Cmcm occur, all the parameters change discontinuously. The conductivity variation under compression is described by the carrier parameters. For the zinc blende phase, both the decrease of carrier concentration and the increase of mobility indicate the overlapped valence band and conduction band separates with pressure. Pressure causes an increase in the hole concentration of HgTe in the cinnabar phase, which leads to the carrier-type inversion and the lowest mobility at 5.6 GPa. In the phase transition process from zinc blende to rock salt, Te atoms are the major ones in atomic movements in the pressure regions of 1.0-1.5 GPa and 1.8-3.1 GPa, whereas Hg atoms are the major ones in the pressure regions of 1.5-1.8 GPa and 3.1-7.7 GPa. The polar optical scattering of the rock salt phase decreases with pressure.
Keywords:  electrical properties      phase transitions      transport properties      scattering mechanism  
Received:  17 May 2015      Revised:  08 July 2015      Published:  05 November 2015
PACS:  64.60.-i (General studies of phase transitions)  
  72.20.-i (Conductivity phenomena in semiconductors and insulators)  
  07.35.+k (High-pressure apparatus; shock tubes; diamond anvil cells)  
Fund: Project supported by the National Basic Research Program of China (Grant No. 2011CB808204), the National Natural Science Foundation of China (Grant Nos. 11374121, 51441006, and 51479220), the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 11404137), the Program for the Development of Science and Technology of Jilin province, China (Grant Nos. 201201079 and 201215222), the Twentieth Five-Year Program for Science and Technology of Education Department of Jilin Province, China (Grant No. 0520306), and the Open Project Program of State Key Laboratory of Superhard Materials of China (Grant No. 201208).
Corresponding Authors:  Cui Xiao-Yan, Gao Chun-Xiao     E-mail:  xycuimail@163.com;cxgao599@aliyun.com

Cite this article: 

Hu Ting-Jing, Cui Xiao-Yan, Li Xue-Fei, Wang Jing-Shu, Lü Xiu-Mei, Wang Ling-Sheng, Yang Jing-Hai, Gao Chun-Xiao Carrier behavior of HgTe under high pressure revealed by Hall effect measurement 2015 Chin. Phys. B 24 116401

[1] Rogach A, Kershaw S, Burt M, Harrison M, Kornowski A, Eychmüller A and Weller H;1999 Adv. Mater. 11 552
[2] Kim H, Cho K, Song H, Min B, Lee J S, Kim G T, Kim S, Kim S H and Noh T;2003 Appl. Phys. Lett. 83 4619
[3] Olk P, Buchler B C, Sandoghdar V, Gaponik N, Eychmüller A and Rogach A L;2004 Appl. Phys. Lett. 84 4732
[4] Mariano A N and Warekois E P;1963 Science 142 672
[5] Bridgman P W 1940 Proc. Am. Acad. Art Sci. 74 24
[6] Blair J and Smith A C;1961 Phys. Rev. Lett. 7 124
[7] Wright N G, McMahon M I, Nelmes R J and San-Miguel A;1993 Phys. Rev. B 48 13111
[8] Werner A, Hochheimer H D, StrÖssner K and Jayaraman A;1983 Phys. Rev. B 28 3330
[9] Huang T L and Ruoff A L;1985 Phys. Rev. B 31 5976
[10] Ohtani A, Seike T, Motobayashi M and Onodera A;1982 J. Phys. Chem. Solids 43 627
[11] McMahon M I, Wright N G, Allan D R and Nelmes R J;1996 Phys. Rev. B 53 2163
[12] Briois V, Brouder Ch, Sainctavit Ph, San Miguel A, Itié J P and Polian A 1997 Phys. Rev. B 56 5866
[13] Huang T L and Ruoff A L;1983 Phys. Status Solidi A 77 K193
[14] McMahon M I, Nelmes R J, Liu H and Belmonte S A;1996 Phys. Rev. Lett. 77 1781
[15] Katsuki S and Kunimune M J;1971 Phys. Soc. Jap. 31 337
[16] Narita S, Egawa M, Suizu K, Katayama M and Mizukami S;1973 Appl. Phys. 2 151
[17] Moon C Y and Wei S H;2006 Phys. Rev. B 74 045205
[18] Long D;1956 Phys. Rev. 101 1256
[19] Saxena A K;1980 Appl. Phys. Lett. 36 79
[20] Errandonea D, Segura A, Sánchez-Royo J F, Muñoz V, Grima P, Chevy A and Ulrich C;1997 Phys. Rev. B 55 16217
[21] Boppart H and Wachter P;1984 Phys. Rev. Lett. 53 1759
[22] van der Pauw L J 1958 Philips Technical Review 20 220
[23] Hu T J, Cui X Y, Gao Y, Han Y H, Liu C L, Liu B, Liu H W, Ma Y Z and Gao C X;2010 Rev. Sci. Instrum. 81 115101
[24] Cui X Y, Hu T J, Han Y H, Gao C X, Peng G, Liu C L, Wu B J, Wang Y, Liu B, Ren W B, Li Y, Su N N, Zou G T, Du F and Chen G;2010 Chin. Phys. Lett. 27 036402
[25] Hu T J, Cui X Y, Li X F, Wang J S, Yang J H and Gao C X;2015 Chin. Phys. Lett. 32 016402
[26] Han Y H, Luo J F, Gao C X, Ma H, Hao A M, Li Y C, Li D X, Liu J, Li M, Liu H W and Zou G T 2005 Chin. Phys. Lett. 22 1347
[27] san-miguel A, Wright N G, McMahon M I and Nelmes R J;1995 Phys. Rev. B 51 8731
[28] Laks D B, Van de Walle C G, Neumark G F, Blöchl P E and Pantelides S T;1992 Phys. Rev. B 45 10965
[29] Jeon D Y, Gislason H P and Watkins G D;1993 Phys. Rev. B 48 7872
[30] Iota V and Weinstein B A;1998 Phys. Rev. Lett. 81 4955
[31] Errandonea D, Segura A, Martínez-García D and Muñoz-San Jose V;2009 Phys. Rev. B 79 125203
[32] Walukiewicz W;1976 J. Phys. C : Solid State Phys. 9 1945
[33] Lehoczky S L, Broerman J G, Nelson Donald A and Whitsett Charles R;1974 Phys. Rev. B 9 1598
[34] Saxena A K;1981 Phys. Rev. B 24 3295
[35] Brooks H 1951 Phys. Rev. 83 879
[36] Brooks H 1955 Advan. Electron. Electron Phys. 7 158
[37] Walukiewicz W;1974 Phys. Rev. Lett. 33 650
[38] Aukerman L W and Willardson R K;1960 J. Appl. Phys. 31 939
[39] Aspnes D E;1976 Phys. Rev. B 14 5331
[40] Saxena A K;1982 Phys. Rev. B 25 5428
[1] Electrical properties of m×n cylindrical network
Zhi-Zhong Tan(谭志中), Zhen Tan(谭震). Chin. Phys. B, 2020, 29(8): 080503.
[2] First principles calculations on the thermoelectric properties of bulk Au2S with ultra-low lattice thermal conductivity
Y Y Wu(伍义远), X L Zhu(朱雪良), H Y Yang(杨恒玉), Z G Wang(王志光), Y H Li(李玉红), B T Wang(王保田). Chin. Phys. B, 2020, 29(8): 087202.
[3] Exploring how hydrogen at gold-sulfur interface affects spin transport in single-molecule junction
Jing Zeng(曾晶), Ke-Qiu Chen(陈克求), Yanhong Zhou(周艳红). Chin. Phys. B, 2020, 29(8): 088503.
[4] Tunable deconfined quantum criticality and interplay of different valence-bond solid phases
Bowen Zhao(赵博文), Jun Takahashi, Anders W. Sandvik. Chin. Phys. B, 2020, 29(5): 057506.
[5] Single crystal growth, structural and transport properties of bad metal RhSb2
D S Wu(吴德胜), Y T Qian(钱玉婷), Z Y Liu(刘子懿), W Wu(吴伟), Y J Li(李延杰), S H Na(那世航), Y T Shao(邵钰婷), P Zheng(郑萍), G Li(李岗), J G Cheng(程金光), H M Weng(翁红明), J L Luo(雒建林). Chin. Phys. B, 2020, 29(3): 037101.
[6] Influence of Zr50Cu50 thin film metallic glass as buffer layer on the structural and optoelectrical properties of AZO films
Bao-Qing Zhang(张宝庆), Gao-Peng Liu(刘高鹏), Hai-Tao Zong(宗海涛), Li-Ge Fu(付丽歌), Zhi-Fei Wei(魏志飞), Xiao-Wei Yang(杨晓炜), Guo-Hua Cao(曹国华). Chin. Phys. B, 2020, 29(3): 037303.
[7] Comparative study on transport properties of N-, P-, and As-doped SiC nanowires: Calculated based on first principles
Ya-Lin Li(李亚林), Pei Gong(龚裴), Xiao-Yong Fang(房晓勇). Chin. Phys. B, 2020, 29(3): 037304.
[8] Calculation of the infrared frequency and the damping constant (full width at half maximum) for metal organic frameworks
M Kurt, H Yurtseven, A Kurt, S Aksoy. Chin. Phys. B, 2019, 28(6): 066401.
[9] Heavy fermions in high magnetic fields
M Smidman, B Shen(沈斌), C Y Guo(郭春煜), L Jiao(焦琳), X Lu(路欣), H Q Yuan(袁辉球). Chin. Phys. B, 2019, 28(1): 017106.
[10] Structural and electrical properties of carbon-ion-implanted ultrananocrystalline diamond films
Hui Xu(徐辉), Jian-Jun Liu(刘建军), Hai-Tao Ye(叶海涛), D J Coathup, A V Khomich, Xiao-Jun Hu(胡晓君). Chin. Phys. B, 2018, 27(9): 096104.
[11] Growth and transport properties of topological insulator Bi2Se3 thin film on a ferromagnetic insulating substrate
Shanna Zhu(朱珊娜), Gang Shi(史刚), Peng Zhao(赵鹏), Dechao Meng(孟德超), Genhao Liang(梁根豪), Xiaofang Zhai(翟晓芳), Yalin Lu(陆亚林), Yongqing Li(李永庆), Lan Chen(陈岚), Kehui Wu(吴克辉). Chin. Phys. B, 2018, 27(7): 076801.
[12] Monogamy quantum correlation near the quantum phase transitions in the two-dimensional XY spin systems
Meng Qin(秦猛), Zhongzhou Ren(任中洲), Xin Zhang(张欣). Chin. Phys. B, 2018, 27(6): 060301.
[13] Non-monotonic dependence of current upon i-width in silicon p-i-n diodes
Zheng-Peng Pang(庞正鹏), Xin Wang(王欣), Jian Chen(陈健), Pan Yang(杨盼), Yang Zhang(张洋), Yong-Hui Tian(田永辉), Jian-Hong Yang(杨建红). Chin. Phys. B, 2018, 27(6): 066106.
[14] Multinary diamond-like chalcogenides for promising thermoelectric application
Dan Zhang(张旦), Hong-Chang Bai(白洪昌), Zhi-Liang Li(李志亮), Jiang-Long Wang(王江龙), Guang-Sheng Fu(傅广生), Shu-Fang Wang(王淑芳). Chin. Phys. B, 2018, 27(4): 047206.
[15] Excellent thermal stability and thermoelectric properties of Pnma-phase SnSe in middle temperature aerobic environment
Yu Tang(唐语), Decong Li(李德聪), Zhong Chen(陈钟), Shuping Deng(邓书平), Luqi Sun(孙璐琪), Wenting Liu(刘文婷), Lanxian Shen(申兰先), Shukang Deng(邓书康). Chin. Phys. B, 2018, 27(11): 118105.
No Suggested Reading articles found!