Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(11): 116401    DOI: 10.1088/1674-1056/24/11/116401
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Carrier behavior of HgTe under high pressure revealed by Hall effect measurement

Hu Ting-Jing (胡廷静)a b, Cui Xiao-Yan (崔晓岩)a, Li Xue-Fei (李雪飞)a, Wang Jing-Shu (王婧姝)a, Lü Xiu-Mei (吕秀梅)a, Wang Ling-Sheng (王棱升)a, Yang Jing-Hai (杨景海)a, Gao Chun-Xiao (高春晓)b
a Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Siping 136000, China;
b State Key Laboratory of Superhard Materials, Jilin University, Changchun 130012, China
Abstract  We investigate the carrier behavior of HgTe under high pressures up to 23 GPa using in situ Hall effect measurements. As the phase transitions from zinc blende to cinnabar, then to rock salt, and finally to Cmcm occur, all the parameters change discontinuously. The conductivity variation under compression is described by the carrier parameters. For the zinc blende phase, both the decrease of carrier concentration and the increase of mobility indicate the overlapped valence band and conduction band separates with pressure. Pressure causes an increase in the hole concentration of HgTe in the cinnabar phase, which leads to the carrier-type inversion and the lowest mobility at 5.6 GPa. In the phase transition process from zinc blende to rock salt, Te atoms are the major ones in atomic movements in the pressure regions of 1.0-1.5 GPa and 1.8-3.1 GPa, whereas Hg atoms are the major ones in the pressure regions of 1.5-1.8 GPa and 3.1-7.7 GPa. The polar optical scattering of the rock salt phase decreases with pressure.
Keywords:  electrical properties      phase transitions      transport properties      scattering mechanism  
Received:  17 May 2015      Revised:  08 July 2015      Accepted manuscript online: 
PACS:  64.60.-i (General studies of phase transitions)  
  72.20.-i (Conductivity phenomena in semiconductors and insulators)  
  07.35.+k (High-pressure apparatus; shock tubes; diamond anvil cells)  
Fund: Project supported by the National Basic Research Program of China (Grant No. 2011CB808204), the National Natural Science Foundation of China (Grant Nos. 11374121, 51441006, and 51479220), the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 11404137), the Program for the Development of Science and Technology of Jilin province, China (Grant Nos. 201201079 and 201215222), the Twentieth Five-Year Program for Science and Technology of Education Department of Jilin Province, China (Grant No. 0520306), and the Open Project Program of State Key Laboratory of Superhard Materials of China (Grant No. 201208).
Corresponding Authors:  Cui Xiao-Yan, Gao Chun-Xiao     E-mail:  xycuimail@163.com;cxgao599@aliyun.com

Cite this article: 

Hu Ting-Jing (胡廷静), Cui Xiao-Yan (崔晓岩), Li Xue-Fei (李雪飞), Wang Jing-Shu (王婧姝), Lü Xiu-Mei (吕秀梅), Wang Ling-Sheng (王棱升), Yang Jing-Hai (杨景海), Gao Chun-Xiao (高春晓) Carrier behavior of HgTe under high pressure revealed by Hall effect measurement 2015 Chin. Phys. B 24 116401

[1] Rogach A, Kershaw S, Burt M, Harrison M, Kornowski A, Eychmüller A and Weller H;1999 Adv. Mater. 11 552
[2] Kim H, Cho K, Song H, Min B, Lee J S, Kim G T, Kim S, Kim S H and Noh T;2003 Appl. Phys. Lett. 83 4619
[3] Olk P, Buchler B C, Sandoghdar V, Gaponik N, Eychmüller A and Rogach A L;2004 Appl. Phys. Lett. 84 4732
[4] Mariano A N and Warekois E P;1963 Science 142 672
[5] Bridgman P W 1940 Proc. Am. Acad. Art Sci. 74 24
[6] Blair J and Smith A C;1961 Phys. Rev. Lett. 7 124
[7] Wright N G, McMahon M I, Nelmes R J and San-Miguel A;1993 Phys. Rev. B 48 13111
[8] Werner A, Hochheimer H D, StrÖssner K and Jayaraman A;1983 Phys. Rev. B 28 3330
[9] Huang T L and Ruoff A L;1985 Phys. Rev. B 31 5976
[10] Ohtani A, Seike T, Motobayashi M and Onodera A;1982 J. Phys. Chem. Solids 43 627
[11] McMahon M I, Wright N G, Allan D R and Nelmes R J;1996 Phys. Rev. B 53 2163
[12] Briois V, Brouder Ch, Sainctavit Ph, San Miguel A, Itié J P and Polian A 1997 Phys. Rev. B 56 5866
[13] Huang T L and Ruoff A L;1983 Phys. Status Solidi A 77 K193
[14] McMahon M I, Nelmes R J, Liu H and Belmonte S A;1996 Phys. Rev. Lett. 77 1781
[15] Katsuki S and Kunimune M J;1971 Phys. Soc. Jap. 31 337
[16] Narita S, Egawa M, Suizu K, Katayama M and Mizukami S;1973 Appl. Phys. 2 151
[17] Moon C Y and Wei S H;2006 Phys. Rev. B 74 045205
[18] Long D;1956 Phys. Rev. 101 1256
[19] Saxena A K;1980 Appl. Phys. Lett. 36 79
[20] Errandonea D, Segura A, Sánchez-Royo J F, Muñoz V, Grima P, Chevy A and Ulrich C;1997 Phys. Rev. B 55 16217
[21] Boppart H and Wachter P;1984 Phys. Rev. Lett. 53 1759
[22] van der Pauw L J 1958 Philips Technical Review 20 220
[23] Hu T J, Cui X Y, Gao Y, Han Y H, Liu C L, Liu B, Liu H W, Ma Y Z and Gao C X;2010 Rev. Sci. Instrum. 81 115101
[24] Cui X Y, Hu T J, Han Y H, Gao C X, Peng G, Liu C L, Wu B J, Wang Y, Liu B, Ren W B, Li Y, Su N N, Zou G T, Du F and Chen G;2010 Chin. Phys. Lett. 27 036402
[25] Hu T J, Cui X Y, Li X F, Wang J S, Yang J H and Gao C X;2015 Chin. Phys. Lett. 32 016402
[26] Han Y H, Luo J F, Gao C X, Ma H, Hao A M, Li Y C, Li D X, Liu J, Li M, Liu H W and Zou G T 2005 Chin. Phys. Lett. 22 1347
[27] san-miguel A, Wright N G, McMahon M I and Nelmes R J;1995 Phys. Rev. B 51 8731
[28] Laks D B, Van de Walle C G, Neumark G F, Blöchl P E and Pantelides S T;1992 Phys. Rev. B 45 10965
[29] Jeon D Y, Gislason H P and Watkins G D;1993 Phys. Rev. B 48 7872
[30] Iota V and Weinstein B A;1998 Phys. Rev. Lett. 81 4955
[31] Errandonea D, Segura A, Martínez-García D and Muñoz-San Jose V;2009 Phys. Rev. B 79 125203
[32] Walukiewicz W;1976 J. Phys. C : Solid State Phys. 9 1945
[33] Lehoczky S L, Broerman J G, Nelson Donald A and Whitsett Charles R;1974 Phys. Rev. B 9 1598
[34] Saxena A K;1981 Phys. Rev. B 24 3295
[35] Brooks H 1951 Phys. Rev. 83 879
[36] Brooks H 1955 Advan. Electron. Electron Phys. 7 158
[37] Walukiewicz W;1974 Phys. Rev. Lett. 33 650
[38] Aukerman L W and Willardson R K;1960 J. Appl. Phys. 31 939
[39] Aspnes D E;1976 Phys. Rev. B 14 5331
[40] Saxena A K;1982 Phys. Rev. B 25 5428
[1] Effects of preparation parameters on growth and properties of β-Ga2O3 film
Zi-Hao Chen(陈子豪), Yong-Sheng Wang(王永胜), Ning Zhang(张宁), Bin Zhou(周兵), Jie Gao(高洁), Yan-Xia Wu(吴艳霞), Yong Ma(马永), Hong-Jun Hei(黑鸿君), Yan-Yan Shen(申艳艳), Zhi-Yong He(贺志勇), and Sheng-Wang Yu(于盛旺). Chin. Phys. B, 2023, 32(1): 017301.
[2] Optical and electrical properties of BaSnO3 and In2O3 mixed transparent conductive films deposited by filtered cathodic vacuum arc technique at room temperature
Jian-Ke Yao(姚建可) and Wen-Sen Zhong(钟文森). Chin. Phys. B, 2023, 32(1): 018101.
[3] Slight Co-doping tuned magnetic and electric properties on cubic BaFeO3 single crystal
Shijun Qin(覃湜俊), Bowen Zhou(周博文), Zhehong Liu(刘哲宏), Xubin Ye(叶旭斌), Xueqiang Zhang(张雪强), Zhao Pan(潘昭), and Youwen Long(龙有文). Chin. Phys. B, 2022, 31(9): 097503.
[4] Universal order-parameter and quantum phase transition for two-dimensional q-state quantum Potts model
Yan-Wei Dai(代艳伟), Sheng-Hao Li(李生好), and Xi-Hao Chen(陈西浩). Chin. Phys. B, 2022, 31(7): 070502.
[5] Radiation effects of 50-MeV protons on PNP bipolar junction transistors
Yuan-Ting Huang(黄垣婷), Xiu-Hai Cui(崔秀海), Jian-Qun Yang(杨剑群), Tao Ying(应涛), Xue-Qiang Yu(余雪强), Lei Dong(董磊), Wei-Qi Li(李伟奇), and Xing-Ji Li(李兴冀). Chin. Phys. B, 2022, 31(2): 028502.
[6] Device design based on the covalent homocouplingof porphine molecules
Minghui Qu(曲明慧), Jiayi He(贺家怡), Kexin Liu(刘可心), Liemao Cao(曹烈茂), Yipeng Zhao(赵宜鹏), Jing Zeng(曾晶), and Guanghui Zhou(周光辉). Chin. Phys. B, 2021, 30(9): 098504.
[7] Fang-Howard wave function modelling of electron mobility in AlInGaN/AlN/InGaN/GaN double heterostructures
Yao Li(李姚) and Hong-Bin Pu(蒲红斌). Chin. Phys. B, 2021, 30(9): 097201.
[8] Achieving high-performance multilayer MoSe2 photodetectors by defect engineering
Jintao Hong(洪锦涛), Fengyuan Zhang(张丰源), Zheng Liu(刘峥), Jie Jiang(蒋杰), Zhangting Wu(吴章婷), Peng Zheng(郑鹏), Hui Zheng(郑辉), Liang Zheng(郑梁), Dexuan Huo(霍德璇), Zhenhua Ni(倪振华), and Yang Zhang(张阳). Chin. Phys. B, 2021, 30(8): 087801.
[9] Epitaxial growth and transport properties of compressively-strained Ba2IrO4 films
Yun-Qi Zhao(赵蕴琦), Heng Zhang(张衡), Xiang-Bin Cai(蔡祥滨), Wei Guo(郭维), Dian-Xiang Ji(季殿祥), Ting-Ting Zhang(张婷婷), Zheng-Bin Gu(顾正彬), Jian Zhou(周健), Ye Zhu(朱叶), and Yue-Feng Nie(聂越峰). Chin. Phys. B, 2021, 30(8): 087401.
[10] Emergent O(4) symmetry at the phase transition from plaquette-singlet to antiferromagnetic order in quasi-two-dimensional quantum magnets
Guangyu Sun(孙光宇), Nvsen Ma(马女森), Bowen Zhao(赵博文), Anders W. Sandvik, and Zi Yang Meng(孟子杨). Chin. Phys. B, 2021, 30(6): 067505.
[11] Transport properties of Tl2Ba2CaCu2O8 microbridges on a low-angle step substrate
Sheng-Hui Zhao(赵生辉), Wang-Hao Tian(田王昊), Xue-Lian Liang(梁雪连), Ze He(何泽), Pei Wang(王培), Lu Ji(季鲁), Ming He(何明), and Hua-Bing Wang(王华兵). Chin. Phys. B, 2021, 30(6): 060308.
[12] Enhanced thermoelectric properties in two-dimensional monolayer Si2BN by adsorbing halogen atoms
Cheng-Wei Wu(吴成伟), Changqing Xiang(向长青), Hengyu Yang(杨恒玉), Wu-Xing Zhou(周五星), Guofeng Xie(谢国锋), Baoli Ou(欧宝立), and Dan Wu(伍丹). Chin. Phys. B, 2021, 30(3): 037304.
[13] Transport property of inhomogeneous strained graphene
Bing-Lan Wu(吴冰兰), Qiang Wei(魏强), Zhi-Qiang Zhang(张智强), and Hua Jiang(江华). Chin. Phys. B, 2021, 30(3): 030504.
[14] Characterization of low-resistance ohmic contacts to heavily carbon-doped n-type InGaAsBi films treated by rapid thermal annealing
Shu-Xing Zhou(周书星), Li-Kun Ai(艾立鹍), Ming Qi(齐鸣), An-Huai Xu(徐安怀), Jia-Sheng Yan(颜家圣), Shu-Sen Li(李树森), and Zhi Jin(金智). Chin. Phys. B, 2021, 30(2): 027304.
[15] Dynamic phase transition of ferroelectric nanotube described by a spin-1/2 transverse Ising model
Chundong Wang(王春栋), Ying Wu(吴瑛), Yulin Cao(曹喻霖), and Xinying Xue(薛新英). Chin. Phys. B, 2021, 30(2): 020504.
No Suggested Reading articles found!