Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(11): 110306    DOI: 10.1088/1674-1056/24/11/110306
GENERAL Prev   Next  

Thermal entanglement of the Ising–Heisenberg diamond chain with Dzyaloshinskii–Moriya interaction

Qiao Jie, Zhou Bin
Department of Physics, Hubei University, Wuhan 430062, China
Abstract  We investigate the thermal entanglement in a spin-1/2 Ising-Heisenberg diamond chain, in which the vertical Heisenberg spin dimers alternate with single Ising spins. Due to the fact that the Dzyaloshinskii-Moriya (DM) interaction contributes to unusual and interesting magnetic properties in actual materials, and moreover it plays a significant role in the degree of the entanglement of the Heisenberg quantum spin systems, we focus on the effects of different DM interactions, including Dz and Dx, on the thermal entanglement of the Heisenberg spin dimer. The concurrence, as a measure of spin dimer entanglement, is calculated for different values of exchange interactions, DM interaction, external magnetic field, and temperature. It is found that the critical temperature and the critical magnetic field corresponding to the vanishing of entanglement increase with DM interaction, and the entanglement revival region gets larger by increasing DM interaction, thus DM interaction favors the formation of the thermal entanglement. It is observed that different DM interaction parameters (Dz and Dx) have remarkably different influences on the entanglement. Different from the case Dz, there is the non-monotonic variation of the concurrence with temperature in the case Dx, and additionally the DM interaction Dx can induce the entanglement near zero temperature in the case that the antiferromagnetic Ising-type interaction constant is larger than the antiferromagnetic Heisenberg interaction constant. It is also shown that for the same value of DM interaction the critical magnetic field of the case Dx is larger than that of the case Dz.
Keywords:  thermal entanglement      Ising-Heisenberg diamond chain      Dzyaloshinskii-Moriya interaction  
Received:  12 March 2015      Revised:  26 July 2015      Accepted manuscript online: 
PACS:  03.67.Bg (Entanglement production and manipulation)  
  03.67.Mn (Entanglement measures, witnesses, and other characterizations)  
  75.10.Pq (Spin chain models)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11274102), the New Century Excellent Talents in University of Ministry of Education of China (Grant No. NCET-11-0960), and the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20134208110001).
Corresponding Authors:  Zhou Bin     E-mail:  binzhou@hubu.edu.cn

Cite this article: 

Qiao Jie, Zhou Bin Thermal entanglement of the Ising–Heisenberg diamond chain with Dzyaloshinskii–Moriya interaction 2015 Chin. Phys. B 24 110306

[1] Loss D and DiVincenzo D P 1998 Phys. Rev. A 57 120
[2] Arnesen M C, Bose S and Vedral V 2001 Phys. Rev. Lett. 87 017901
[3] Nielsen M A 2000 arXiv:quant-ph/0011036
[4] Wang X 2001 Phys. Rev. A 64 012313
[5] Kamta G L and Starace A F 2002 Phys. Rev. Lett. 88 107901
[6] Xi X Q, Hao S R, Chen W X and Yue R H 2002 Chin. Phys. Lett. 19 1044
[7] Zhou L, Song H S, Guo Y Q and Li C 2003 Phys. Rev. A 68 024301
[8] Sun Y, Chen Y and Chen H 2003 Phys. Rev. A 68 044301
[9] Canosa N and Rossignoli R 2004 Phys. Rev. A 69 052306
[10] Cao M and Zhu S 2005 Phys. Rev. A 71 034311
[11] Zhang G F and Li S S 2005 Phys. Rev. A 72 034302
[12] Wang Y F, Cao J P and Wang Y P 2005 Chin. Phys. Lett. 22 2151
[13] Chen S R, Xia Y J and Man Z X 2010 Chin. Phys. B 19 050304
[14] Ren J Z, Shao X Q, Zhang S and Yeon K H 2010 Chin. Phys. B 19 100307
[15] Ghosh S, Rosenbaum T F, Aeppli G and Coppersmith S N 2003 Nature 425 48
[16] Vértesi T and Bene E 2006 Phys. Rev. B 73 134404
[17] Rappoport T G, Ghivelder L, Fernandes J C, Guimarães R B and Continentino M A 2007 Phys. Rev. B 75 054422
[18] Souza A M, Reis M S, Soares-Pinto D O, Oliveira I S and Sarthour R S 2008 Phys. Rev. B 77 104402
[19] Takano K, Kubo K and Sakamoto H 1996 J. Phys.: Condens. Matter 86405
[20] Okamoto K, Tonegawa T, Takahashi Y and Kaburagi M 1999 J. Phys.: Condens. Matter 11 10485
[21] Honecker A and Läuchli A 2001 Phys. Rev. B 63 174407
[22] Okamoto K, Tonegawa T and Kaburagi M 2003 J. Phys.: Condens. Matter 15 5979
[23] Takano K, Suzuki H and Hida K 2009 Phys. Rev. B 80 104410
[24] Pereira M S S, de Moura F A B F and Lyra M L 2009 Phys. Rev. B 79 054427
[25] Jeschke H, Opahle I, Kandpal H, Valentí R, Das H, Saha-Dasgupta T, Janson O, Rosner H, Brühl A, Wolf B, Lang M, Richter J, Hu S, Wang X, Peters R, Pruschke T and Honecker A 2011 Phys. Rev. Lett. 106 217201
[26] Kikuchi H, Fujii Y, Chiba M, Mitsudo S and Idehara T 2003 Physica B 329 967
[27] Kikuchi H, Fujii Y, Chiba M, Mitsudo S, Idehara T, Tonegawa T, Okamoto K, Sakai T, Kuwai T and Ohta H 2005 Phys. Rev. Lett. 94 227201
[28] Kikuchi H, Fujii Y, Chiba M, Mitsudo S, Idehara T, Tonegawa T, Okamoto K, Sakai T, Kuwai T, Kindo K, Matsuo A, Higemoto W, Nishiyama K, HorvatićMand Bertheir C 2005 Prog. Theor. Phys. Supplement 159 1
[29] Rule K C, Wolter A U B, Süllow S, Tennant D A, Brühl A, Köhler S, Wolf B, Lang M and Schreuer J 2008 Phys. Rev. Lett. 100 117202
[30] Rule K C, Reehuis M, Gibson M C R, Ouladdiaf B, Gutmann M J, Hoffmann J U, Gerischer S, Tennant D A, Süllow S and Lang M 2011 Phys. Rev. B 83 104401
[31] Jaščur M and Strečka J 2004 J. Magn. Magn. Mater. 272–276 984
[32] Čanová L, Strečka J and Jasčŭr M 2006 J. Phys.: Condens. Matter 18 4967
[33] Strečka J, Čanová L, Lučivjanský T and Jasčŭr M 2009 J. Phys.: Conf. Series 145 012058
[34] Valverde J S, Rojas O and de Souza S M 2008 J. Phys.: Condens. Matter 20 345208
[35] Čanová L, Strečka J and Lučivjanský T 2009 Condens. Matter Phys. 12 353
[36] Rojas O, de Souza S M, Ohanyan V and Khurshudyan M 2011 Phys. Rev. B 83 094430
[37] Gálisová L 2013 Phys. Status Solidi B 250 187
[38] Ananikian N S, Strečka J and Hovhannisyan V 2014 Solid State Commun. 194 48
[39] Ananikian N S, Ananikyan L N, Chakhmakhchyan L A and Rojas O 2012 J. Phys.: Condens. Matter 24 256001
[40] Rojas O, Rojas M, Ananikian N S and de Souza S M 2012 Phys. Rev. A 86 042330
[41] Torrico J, Rojas M, de Souza S M, Rojas O and Ananikian N S 2014 Europhys. Lett. 108 50007
[42] Abgaryan V S, Ananikian N S, Ananikyan L N and Hovhannisyan V 2015 Solid State Commun. 203 5
[43] Dzyaloshinski I 1958 J. Phys. Chem. Solids 4 241
[44] Moriya T 1960 Phys. Rev. 120 91
[45] Wang X G and Zanardi P 2001 Phys. Lett. A 281 101
[46] Zhang G F 2007 Phys. Rev. A 75 034304
[47] Li D C, Wang X P and Cao Z L 2008 J. Phys. Condens. Matter 20 325229
[48] Mehran E, Mahdavifar S and Jafari R 2014 Phys. Rev. A 89 042306
[49] Hill S and Wootters W K 1997 Phys. Rev. Lett. 78 5022
[50] Coffman V, Kundu J and Wootters W K 2000 Phys. Rev. A 61 052306
[1] Exact soliton solutions in anisotropic ferromagnetic wires with Dzyaloshinskii-Moriya interaction
Qiu-Yan Li(李秋艳), Dun-Zhao(赵敦), and Zai-Dong Li(李再东). Chin. Phys. B, 2021, 30(1): 017504.
[2] Thermal entanglement in a spin-1/2 Ising–Heisenberg butterfly-shaped chain with impurities
Meng-Ru Ma(马梦如), Yi-Dan Zheng(郑一丹), Zhu Mao(毛竹), and Bin Zhou(周斌). Chin. Phys. B, 2020, 29(11): 110308.
[3] Thermal quantum correlations of a spin-1/2 Ising-Heisenberg diamond chain with Dzyaloshinskii-Moriya interaction
Yidan Zheng(郑一丹), Zhu Mao(毛竹), Bin Zhou(周斌). Chin. Phys. B, 2018, 27(9): 090306.
[4] Quantum steering in Heisenberg models with Dzyaloshinskii-Moriya interactions
Hui-Zhen Li(李慧贞), Rong-Sheng Han(韩榕生), Ye-Qi Zhang(张业奇), Liang Chen(陈亮). Chin. Phys. B, 2018, 27(12): 120304.
[5] Thermal entanglement of the spin-1 Ising–Heisenberg diamond chain with biquadratic interaction
Yi-Dan Zheng(郑一丹), Zhu Mao(毛竹), Bin Zhou(周斌). Chin. Phys. B, 2017, 26(7): 070302.
[6] Transferring information through a mixed-five-spin chain channel
Hamid Arian Zad, Hossein Movahhedian. Chin. Phys. B, 2016, 25(8): 080307.
[7] The effects of the Dzyaloshinskii-Moriya interaction on the ground-state properties of the XY chain in a transverse field
Zhong Ming, Xu Hui, Liu Xiao-Xian, Tong Pei-Qing. Chin. Phys. B, 2013, 22(9): 090313.
[8] A thermal entangled quantum refrigerator based on a two-qubit Heisenberg model with Dzyaloshinskii-Moriya interaction in an external magnetic field
Wang Hao, Wu Guo-Xing. Chin. Phys. B, 2013, 22(5): 050512.
[9] Magnetization reversal within Dzyaloshinskii–Moriya interaction under on-site Coulomb interaction in BiCrO3
Feng Hong-Jian. Chin. Phys. B, 2012, 21(8): 087103.
[10] Entangled quantum heat engine based on two-qubit Heisenberg XY model
He Ji-Zhou,He Xian,Zheng Jie. Chin. Phys. B, 2012, 21(5): 050303.
[11] Teleportation and thermal entanglement in two-qubit Heisenberg XYZ spin chain with the Dzyaloshinski–Moriya interaction and the inhomogeneous magnetic field
Gao Dan, Zhao Zhen-Shuang, Zhu Ai-Dong, Wang Hong-Fu, Shao Xiao-Qiang, Zhang Shou. Chin. Phys. B, 2010, 19(9): 090313.
[12] Thermal entanglement in two-qutrit spin-1 anisotropic Heisenberg model with inhomogeneous magnetic field
Erhan Albayrak. Chin. Phys. B, 2010, 19(9): 090319.
[13] Quantum phase transition and entanglement in Heisenberg XX spin chain with impurity
Chen Shi-Rong, Xia Yun-Jie, Man Zhong-Xiao. Chin. Phys. B, 2010, 19(5): 050304.
[14] Thermal entanglement in molecular spin rings
Hou Jing-Min, Du Long, Ding Jia-Yan, Zhang Wen-Xin. Chin. Phys. B, 2010, 19(11): 110313.
[15] Pairwise thermal entanglement in a three-qubit Heisenberg XX model with a nonuniform magnetic field and Dzyaloshinski–Moriya interaction
Ren Jin-Zhong, Shao Xiao-Qiang, Zhang Shou, Yeon Kyu-Hwang. Chin. Phys. B, 2010, 19(10): 100307.
No Suggested Reading articles found!