|
|
Thermal entanglement of the spin-1 Ising–Heisenberg diamond chain with biquadratic interaction |
Yi-Dan Zheng(郑一丹), Zhu Mao(毛竹), Bin Zhou(周斌) |
Department of Physics, Hubei University, Wuhan 430062, China |
|
|
Abstract We investigate the thermal entanglement of the spin-1 Ising–Heisenberg diamond chain, which can be regarded as a theoretical model for the homometallic molecular ferrimagnet[Ni3(C4H2O4)2-(μ3-OH)2(H2O)4]n·(2H2O)n. Two cases, i.e., the isotropic Heisenberg (Ising–XXX) coupling model and anisotropic Heisenberg (Ising–XXZ) coupling model, are discussed respectively. The negativity is chosen as the measurement of the thermal entanglement. By means of the transfer-matrix approach, we focus on the effects of biquadratic interaction parameters on the negativity of the infinite spin-1 Ising–Heisenberg diamond chain. In the Ising–XXX coupling model, it is shown that for the case with ferromagnetic coupling the thermal entanglement can be induced by the biquadratic interaction, but the external magnetic field will suppress the occurrence of the entanglement induced by the biquadratic interaction. In the Ising–XXZ coupling model, for the case with antiferromagnetic coupling, due to the biquadratic interaction the effect of the anisotropy parameter on the entanglement will be suppressed at near-zero temperature. Moreover, the biquadratic interaction makes the threshold temperature increase. The effects of the external magnetic field on the thermal entanglement are also discussed, and it is observed that the entanglement revival phenomena exist in both models considered.
|
Received: 06 November 2016
Revised: 18 March 2017
Accepted manuscript online:
|
PACS:
|
03.67.Bg
|
(Entanglement production and manipulation)
|
|
03.67.Mn
|
(Entanglement measures, witnesses, and other characterizations)
|
|
75.10.Pq
|
(Spin chain models)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No.11274102),the New Century Excellent Talents in University of Ministry of Education of China (Grant No.NCET-11-0960),and the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No.20134208110001). |
Corresponding Authors:
Zhu Mao, Bin Zhou
E-mail: maozhu1115@163.com;binzhou@hubu.edu.cn
|
Cite this article:
Yi-Dan Zheng(郑一丹), Zhu Mao(毛竹), Bin Zhou(周斌) Thermal entanglement of the spin-1 Ising–Heisenberg diamond chain with biquadratic interaction 2017 Chin. Phys. B 26 070302
|
[1] |
Bennett C H and Wiesner S J 1992 Phys. Rev. Lett. 69 2881
|
[2] |
Schumacher B 1995 Phys. Rev. A 51 2738
|
[3] |
Bennett C H, Brassard G, Crépeau C, Jozsa R, Peres A and Wootters W K 1993 Phys. Rev. Lett. 70 1895
|
[4] |
Deutsch D, Ekert A, Jozsa R, Macchiavello C and Popescu S S 1996 Phys. Rev. Lett. 77 2818
|
[5] |
Raussendorf R and Briegel H J 2001 Phys. Rev. Lett. 86 5188
|
[6] |
Oconnor K M and Wootters W K 2001 Phys. Rev. A 63 052302
|
[7] |
Arnesen M C, Bose S and Vedral V 2001 Phys. Rev. Lett. 87 017901
|
[8] |
Nielsen M A 2000 arXiv:quant-ph/0011036v1
|
[9] |
Wang X G 2001 Phys. Rev. A 64 012313
|
[10] |
Zhang Y L and Zhou B 2011 Acta Phys. Sin. 60 120301 (in Chinese)
|
[11] |
Cao M and Zhu S Q 2005 Phys. Rev. A 71 034311
|
[12] |
Hou J M, Du L, Ding J Y and Zhang W X 2010 Chin. Phys. B 19 110313
|
[13] |
Ma X S, Qiao Y, Cheng M T and Liu X D 2014 Quantum Inf. Process. 13 1879
|
[14] |
Guo K T, Liang M C, Xu H Y and Zhu C B 2010 J. Phys. A 43 505301
|
[15] |
Takano K, Kubo K and Sakamoto H 1996 J. Phys.:Condens. Matter 8 6405
|
[16] |
Kikuchi H, Fujii Y, Chiba M, Mitsudo S and Idehara T 2003 Physica B 329 967
|
[17] |
Kikuchi H, Fujii Y, Chiba M, Mitsudo S, Idehara T, Tonegawa T, Okamoto K, Sakai T, Kuwai T and Ohta H 2005 Phys. Rev. Lett. 94 227201
|
[18] |
Valverde S, Rojas O and S M de Souza 2008 J. Phys.:Condens. Matter. 20 345208
|
[19] |
Li Y C and Li S S 2008 Phys. Rev. B 78 184412
|
[20] |
Rule K C, Wolter A U B, Sullow S, Temmamt D A, Kohler S, Wolf B, Lang M and Schreuer J 2008 Phys. Rev. Lett. 100 117202
|
[21] |
Aimo F, Kramer S, Klanjsek M, Horvatic M, Berthier C and Kikuchi H 2009 Phys. Rev. Lett. 102 127205
|
[22] |
Fu H H, Yao K L and Liu Z L 2006 Phy. Let. A 358 443
|
[23] |
Jaščur M and Strečka J 2004 J. Magn. Magn. Mater. 272 984
|
[24] |
Čanová L, Strečka J and Jaščur M 2006 J. Phys.:Condens. Matter 18 4967
|
[25] |
Strečka J, Čanová L, LučivjanskÝ T and Jaščur M 2009 J. Phys.:Conf. Series 145 012058
|
[26] |
Ananikian N S, Ananikyan L N, Chakhmakhchyan L A and Rojas O 2012 J. Phys.:Condens. Matter 24 25601
|
[27] |
Rojas O, Rojas M, Ananikian N S and de Souza S M 2012 Phys. Rev. A 86 042330
|
[28] |
Torrico J, Rojas M, de Souza S M and Ananikian N S 2014 Europhys. Lett. 108 50007
|
[29] |
Torrico J, Rojas M, de Souza S M and Rojas O 2016 arXiv:1602.07279[cond-mat.str-el]
|
[30] |
Qiao J and Zhou B 2015 Chin. Phys. B 24 110306
|
[31] |
Gao K, Xu Y L, Kong X M and Liu Z Q 2015 Physica A 429 10
|
[32] |
Čanová L, Strečka J and LučivjanskÝ T 2009 Condens. Matter Phys. 12 353
|
[33] |
Rojas O, de Souza S M, Ohanyan V and Khurshudyan M 2011 Phys. Rev. B 83 094430
|
[34] |
Lisnyi B and Strečka J 2015 J. Magn. Magn. Mater. 377 502
|
[35] |
Abgaryan V S, Ananikian N S, Ananikyan L N and Hovhannisyan V V 2015 Solid State Comm. 203 5
|
[36] |
Konar S, Mukherjee P S, Zangrado E, Lloret F and Chaudhuri N R 2002 Angew. Chem. Ind. Ed 41 1561
|
[37] |
Sheikh J A, Adhikary A, Jena H S, Biswas S and Konar S 2014 Inorg. Chem. 53 1606
|
[38] |
Abgaryan V S, Ananikian N S, Ananikyan L N and Hovhannisyan V V 2015 Solid State Comm. 224 15
|
[39] |
Ananikian N S, Strečka J and Hovhannisyan V 2014 Solid State Comm. 194 48
|
[40] |
Hovhannisyan V V, Strečka and Ananikian N S 2016 J. Phys.:Condens. Matter 28 085401
|
[41] |
Hovhannisyan V V, Ananikian N S and Kenna R 2016 Physica A 453 116
|
[42] |
Vidal G and Werner R F 2002 Phys. Rev. A 65 032314
|
[43] |
Baxter R J 1982 Exactly Solved Models in Statistical Mechanics (New York:Academic Press)
|
[44] |
Souza A M, Reis M S, Soares-Pinto D O, Oliveira I S and Sarthour R S 2008 Phys. Rev. B 77 104402
|
[45] |
Lima Sharma A L and Gomes A M 2009 Europhys. Lett. 84 60003
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|