Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(7): 077308    DOI: 10.1088/1674-1056/23/7/077308
Special Issue: TOPICAL REVIEW — Magnetism, magnetic materials, and interdisciplinary research
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Exotic electronic states in the world of flat bands:From theory to material

Liu Zhenga, Liu Fenga b, Wu Yong-Shic d
a Department of Materials Science and Engineering, University of Utah, Salt Lake City, UT 84112, USA;
b Collaborative Innovation Center of Quantum Matter, Beijing 100084, China;
c State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai 200433, China;
d Department of Physics and Astronomy, University of Utah, Salt Lake City, UT 84112, USA
Abstract  

It has long been noticed that special lattices contain single-electron flat bands (FB) without any dispersion. Since the kinetic energy of electrons is quenched in the FB, this highly degenerate energy level becomes an ideal platform to achieve strongly correlated electronic states, such as magnetism, superconductivity, and Wigner crystal. Recently, the FB has attracted increasing interest because of the possibility to go beyond the conventional symmetry-breaking phases towards topologically ordered phases, such as lattice versions of fractional quantum Hall states. This article reviews different aspects of FBs in a nutshell. Starting from the standard band theory, we aim to bridge the frontier of FBs with the textbook solidstate physics. Then, based on concrete examples, we show the common origin of FBs in terms of destructive interference, and discuss various many-body phases associated with such a singular band structure. In the end, we demonstrate real FBs in quantum frustrated materials and organometallic frameworks.

Keywords:  electronic band structure      strongly-correlated electrons      topological material  
Received:  03 April 2014      Revised:  15 May 2014      Accepted manuscript online: 
PACS:  73.43.Cd (Theory and modeling)  
  73.61.Ph (Polymers; organic compounds)  
  71.10.Fd (Lattice fermion models (Hubbard model, etc.))  
Fund: 

Project supported by the Department Of Energy, Office of Basic Energy Sciences, USA (Grant No. DE-FG02-03ER46027) and the U. S. Natural Science Foundation (Grant No. PHY-1068558).

Corresponding Authors:  Liu Feng     E-mail:  fliu@eng.utah.edu
About author:  73.43.Cd; 73.61.Ph; 71.10.Fd

Cite this article: 

Liu Zheng, Liu Feng, Wu Yong-Shi Exotic electronic states in the world of flat bands:From theory to material 2014 Chin. Phys. B 23 077308

[1] Castro Neto A H, Guinea F, Peres N M R, Novoselov R S and Geim A K 2009 Rev. Mod. Phys. 81 109
[2] Geim A K 2011 Rev. Mod. Phys. 83 851
[3] Mielke A 1991 J. Phys. A: Math. Gen. 24 L73
[4] Mielke A 1991 J. Phys. A: Math. Gen. 24 3311
[5] Mielke A 1992 J. Phys. A: Math. Gen. 25 4335
[6] Tasaki H 1992 Phys. Rev. Lett. 69 1608
[7] Zhang S, Hung H H and Wu C 2010 Phys. Rev. A 82 053618
[8] Miyahara S, Kusuta S and Furukawa N 2007 Physica C: Superconductivity 460 1145
[9] Wu C, Bergman D, Balents L and Das Sarma S 2007 Phys. Rev. Lett. 99 070401
[10] Wu C and Das Sarma S 2008 Phys. Rev. B 77 235107
[11] Xiao D, Chang M C and Niu Q 2010 Rev. Mod. Phys. 82 1959
[12] Thouless D J, Kohmoto M, Nightingale M P and Den Nijs M 1982 Phys. Rev. Lett. 49 405
[13] Haldane F D M 1988 Phys. Rev. Lett. 61 2015
[14] Qi X, Wu Y S and Zhang S 2006 Phys. Rev. B 74 085308
[15] Kane C L and Mele E J 2005 Phys. Rev. Lett. 95 146802
[16] Hasan M Z and Kane C L 2010 Rev. Mod. Phys. 82 3045
[17] Qi X L and Zhang S C 2011 Rev. Mod. Phys. 83 1057
[18] Tang E, Mei J W and Wen X G 2011 Phys. Rev. Lett. 106 236802
[19] Sun K, Gu Z, Katsura H and Das Sarma S 2011 Phys. Rev. Lett. 106 236803
[20] Neupert T, Santos L, Chamon C and Mudry C 2011 Phys. Rev. Lett. 106 236804
[21] Sheng D N, Gu Z C, Sun K and Sheng L 2011 Nat. Commun. 2
[22] Regnault N and Bernevig B A 2011 Phys. Rev. X 1 021014
[23] Nayak C, Simon S H, Stern A, Freedman M and Sarma S D 2008 Rev. Mod. Phys. 80 1083
[24] Tasaki H 1998 Progress of Theoretical Physics 99 489
[25] Parameswaran S A, Roy R and Sondhi S L 2013 Comptes Rendus Physique 14 816
[26] Bergholtz E J and Liu Z 2013 Int. J. Mod. Phys. B 27
[27] Cooper N R and Dalibard J 2013 Phys. Rev. Lett. 110 185301
[28] Yao N Y, Laumann C R, Gorshkov A V, Bennett S D, Demler E, Zoller P and Lukin M D 2012 Phys. Rev. Lett. 109 266804
[29] Yao N Y, Gorshkov A V, Laumann C R, Luchli A M, Ye J and Lukin M D 2013 Phys. Rev. Lett. 110 185302
[30] Derzhko O, Richter J, Honecker A and Schmidt H J 2007 Low Temperature Physics 33 745
[31] Miyahara S, Kubo K, Ono H, Shimomura Y and Furukawa N 2005 J. Phys. Soc. Jpn. 74 1918
[32] Bergman D L, Wu C and Balents L 2008 Phys. Rev. B 78 125104
[33] Cardona M and Peter Y Y 2005 Fundamentals of Semiconductors (Berlin: Springer)
[34] Vidal J, Mosseri R and Doucot B 1998 Phys. Rev. Lett. 81 5888
[35] Wen X G 2004 Quantum Field Theory of Many-body Systems from the Origin of Sound to an Origin of Light and Electrons (New York: Oxford University Press Inc.)
[36] Thouless D J 1984 J. Phys. C: Solid State Phys. 17 L325
[37] Liu Z,Wang Z F, Mei JW,Wu Y S and Liu F 2013 Phys. Rev. Lett. 110 106804
[38] Wu C 2008 Phys. Rev. Lett. 101 186807
[39] Zhang M, Hung H H, Zhang C andWu C 2011 Phys. Rev. A 83 023615
[40] Qi X L 2011 Phys. Rev. Lett. 107 126803
[41] Mermin N D and Wagner H 1966 Phys. Rev. Lett. 17 1133
[42] Maksymenko M, Honecker A, Moessner R, Richter J and Derzhko O 2012 Phys. Rev. Lett. 109 096404
[43] Nagaoka Y 1966 Phys. Rev. 147 392
[44] Alexandrov A S 2010 Theory of Superconductivity: from Weak to Strong Coupling (New York: CRC Press)
[45] Stormer H L, Tsui D C and Gossard A C 1999 Rev. Mod. Phys. 71 S298
[46] Niu Q, Thouless D J and Wu Y S 1985 Phys. Rev. B 31 3372
[47] Haldane F D M 1991 Phys. Rev. Lett. 67 937
[48] Wu Y S 1994 Phys. Rev. Lett. 73 922
[49] Su W P, Wu Y S and Yang J 1996 Phys. Rev. Lett. 77 3423
[50] Levin M and Wen X G 2006 Phys. Rev. Lett. 96 110405
[51] Li H and Haldane F D M 2008 Phys. Rev. Lett. 101 010504
[52] Kitaev A and Preskill J 2006 Phys. Rev. Lett. 96 110404
[53] Li W, Liu Z, Wu Y S and Chen Y 2014 Phys. Rev. B 89 125411
[54] Jones R O and Gunnarsson O 1989 Rev. Mod. Phys. 61 689
[55] Lee P A 2008 Science 321 1306
[56] Balents L 2010 Nature 464 199
[57] Lacroix C, Mendels P and Mila F 2011 Introduction to Frustrated Magnetism: Materials, Experiments, Theory, Vol. 164 (Berlin: Springer)
[58] Nytko E A, Helton J S, Mller P and Nocera D G 2008 Journal of the American Chemical Society 130 2922
[59] Mei J W, Tang E and Wen X G 2011 arXiv:1102.2406
[60] Schulenburg J, Honecker A, Schnack J, Richter J and Schmidt H J 2002 Phys. Rev. Lett. 88 167207
[61] Sakamoto J, van Heijst J, Lukin O and Schluter A D 2009 Angewandte Chemie 48 1030
[62] Barth J V, Costantini G and Kern K 2005 Nature 437
[63] Wang Z F, Liu Z and Liu F 2013 Nat. Commun. 4 1471
[64] Wang Z F, Su N and Liu F 2013 Nano Letters 13 2842
[65] Wang Z F, Liu Z and Liu F 2013 Phys. Rev. Lett. 110 196801
[66] McKillop A, Smith J D and Worrall I J 1985 Organometallic Compounds of Aluminum, Gallium, Indium and Thallium (New York: Chapman and Hall/CRC)
[67] Kambe T, Sakamoto R, Hoshiko K, Takada K, Miyachi M, Ryu J H, Sasaki S, Kim J, Nakazato K and Takata M 2013 Journal of the American Chemical Society 135 2462
[68] Trescher M and Bergholtz E J 2012 Phys. Rev. B 86 241111
[69] Yang S, Gu Z C, Sun K and Sarma S D 2012 Phys. Rev. B 86 241112
[70] Wang Y F, Yao H, Gong C D and Sheng D N 2012 Phys. Rev. B 86 201101
[71] Lu Y M and Ran Y 2012 Phys. Rev. B 85 165134
[72] Wang Y F, Yao H, Gu Z C, Gong C D and Sheng D N 2012 Phys. Rev. Lett. 108 126805
[73] Weeks C and Franz M 2012 Phys. Rev. B 85 041104
[74] Li Y and Wu C 2013 Phys. Rev. Lett. 110 216802
[1] Unusual electronic structure of Dirac material BaMnSb2 revealed by angle-resolved photoemission spectroscopy
Hongtao Rong(戎洪涛), Liqin Zhou(周丽琴), Junbao He(何俊宝), Chunyao Song(宋春尧), Yu Xu(徐煜), Yongqing Cai(蔡永青), Cong Li(李聪), Qingyan Wang(王庆艳), Lin Zhao(赵林), Guodong Liu(刘国东), Zuyan Xu(许祖彦), Genfu Chen(陈根富), Hongming Weng(翁红明), and Xingjiang Zhou(周兴江). Chin. Phys. B, 2021, 30(6): 067403.
[2] Electronic structure and spatial inhomogeneity of iron-based superconductor FeS
Chengwei Wang(王成玮), Meixiao Wang(王美晓), Juan Jiang(姜娟), Haifeng Yang(杨海峰), Lexian Yang(杨乐仙), Wujun Shi(史武军), Xiaofang Lai(赖晓芳), Sung-Kwan Mo, Alexei Barinov, Binghai Yan(颜丙海), Zhi Liu(刘志), Fuqiang Huang(黄富强), Jinfeng Jia(贾金峰), Zhongkai Liu(柳仲楷), Yulin Chen(陈宇林). Chin. Phys. B, 2020, 29(4): 047401.
[3] Atomically flat surface preparation for surface-sensitive technologies
Cen-Yao Tang(唐岑瑶), Zhi-Cheng Rao(饶志成), Qian-Qian Yuan(袁茜茜), Shang-Jie Tian(田尚杰), Hang Li(李航), Yao-Bo Huang(黄耀波), He-Chang Lei(雷和畅), Shao-Chun Li(李绍春), Tian Qian(钱天), Yu-Jie Sun(孙煜杰), Hong Ding(丁洪). Chin. Phys. B, 2020, 29(2): 028101.
[4] Pressure-dependent physical properties of cubic Sr BO3 ( B=Cr, Fe) perovskites investigated by density functional theory
Md Zahid Hasan, Md Rasheduzzaman, and Khandaker Monower Hossain. Chin. Phys. B, 2020, 29(12): 123101.
[5] Transport properties of topological nodal-line semimetal candidate CaAs3 under hydrostatic pressure
Jing Li(李婧), Ling-Xiao Zhao(赵凌霄), Yi-Yan Wang(王义炎), Xin-Min Wang(王欣敏), Chao-Yang Ma(麻朝阳), Wen-Liang Zhu(朱文亮), Mo-Ran Gao(高默然), Shuai Zhang(张帅), Zhi-An Ren(任治安), Gen-Fu Chen(陈根富). Chin. Phys. B, 2019, 28(4): 046202.
[6] Optical investigation of topological semimetal SrMnSb2
Zi-Yang Qiu(邱子阳), Zhi-Yu Liao(廖知裕), Xiang-Gang Qiu(邱祥冈). Chin. Phys. B, 2019, 28(4): 047801.
[7] Physical properties of ternary thallium chalcogenes Tl2MQ3 (M=Zr, Hf; Q=S, Se, Te) via ab-initio calculations
Engin Ateser, Oguzhan Okvuran, Yasemin Oztekin Ciftci, Haci Ozisik, Engin Deligoz. Chin. Phys. B, 2019, 28(10): 106301.
[8] Density functional theory analysis of electronic structure and optical properties of La-doped Cd2SnO4 transparent conducting oxide
Mei Tang(汤梅), Jia-Xiang Shang(尚家香), Yue Zhang(张跃). Chin. Phys. B, 2018, 27(1): 017101.
[9] Elastic, thermodynamic, electronic, and optical properties of recently discovered superconducting transition metal boride NbRuB:An ab-initio investigation
F Parvin, S H Naqib. Chin. Phys. B, 2017, 26(10): 106201.
[10] Large linear magnetoresistance in a new Dirac material BaMnBi2
Yi-Yan Wang(王义炎), Qiao-He Yu(郁巧鹤), Tian-Long Xia(夏天龙). Chin. Phys. B, 2016, 25(10): 107503.
[11] Pressure effects on magnetic properties and martensitic transformation of Ni–Mn–Sn magnetic shape memory alloys
Zhang Ya-Zhuo, Cao Jia-Mu, Tan Chang-Long, Cao Yi-Jiang, Cai Wei. Chin. Phys. B, 2014, 23(3): 037504.
[12] Theoretical optoelectronic analysis of intermediate-band photovoltaic material based on ZnY1-xOx (Y=S, Se, Te) semiconductors by first-principles calculations
Wu Kong-Ping, Gu Shu-Lin, Ye Jian-Dong, Tang Kun, Zhu Shun-Ming, Zhou Meng-Ran, Huang You-Rui, Zhang Rong, Zheng You-Dou. Chin. Phys. B, 2013, 22(10): 107103.
[13] Electronic structure and optical properties of the red and yellow mercuric iodides
Xu Bin, Lü Jian. Chin. Phys. B, 2010, 19(3): 037102.
[14] Effect of Co on magnetic property and phase stability of Ni–Mn–Ga ferromagnetic shape memory alloys: A first-principles study
Tan Chang-Long, Jiang Jiu-Xing, Tian Xiao-Hua, Cai Wei. Chin. Phys. B, 2010, 19(10): 107102.
[15] First principles study on the ferroelectricity of the perovskite ABO3 ferroelectrics
Wang Yuan-Xu, Zhong Wei-Lie, Wang Chun-Lei, Zhang Pei-Lin, Su Xuan-Tao. Chin. Phys. B, 2002, 11(7): 714-719.
No Suggested Reading articles found!