Special Issue:
TOPICAL REVIEW — Magnetism, magnetic materials, and interdisciplinary research
|
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Exotic electronic states in the world of flat bands:From theory to material |
Liu Zheng (刘峥)a, Liu Feng (刘锋)a b, Wu Yong-Shi (吴咏时)c d |
a Department of Materials Science and Engineering, University of Utah, Salt Lake City, UT 84112, USA;
b Collaborative Innovation Center of Quantum Matter, Beijing 100084, China;
c State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai 200433, China;
d Department of Physics and Astronomy, University of Utah, Salt Lake City, UT 84112, USA |
|
|
Abstract It has long been noticed that special lattices contain single-electron flat bands (FB) without any dispersion. Since the kinetic energy of electrons is quenched in the FB, this highly degenerate energy level becomes an ideal platform to achieve strongly correlated electronic states, such as magnetism, superconductivity, and Wigner crystal. Recently, the FB has attracted increasing interest because of the possibility to go beyond the conventional symmetry-breaking phases towards topologically ordered phases, such as lattice versions of fractional quantum Hall states. This article reviews different aspects of FBs in a nutshell. Starting from the standard band theory, we aim to bridge the frontier of FBs with the textbook solidstate physics. Then, based on concrete examples, we show the common origin of FBs in terms of destructive interference, and discuss various many-body phases associated with such a singular band structure. In the end, we demonstrate real FBs in quantum frustrated materials and organometallic frameworks.
|
Received: 03 April 2014
Revised: 15 May 2014
Accepted manuscript online:
|
PACS:
|
73.43.Cd
|
(Theory and modeling)
|
|
73.61.Ph
|
(Polymers; organic compounds)
|
|
71.10.Fd
|
(Lattice fermion models (Hubbard model, etc.))
|
|
Fund: Project supported by the Department Of Energy, Office of Basic Energy Sciences, USA (Grant No. DE-FG02-03ER46027) and the U. S. Natural Science Foundation (Grant No. PHY-1068558). |
Corresponding Authors:
Liu Feng
E-mail: fliu@eng.utah.edu
|
About author: 73.43.Cd; 73.61.Ph; 71.10.Fd |
Cite this article:
Liu Zheng (刘峥), Liu Feng (刘锋), Wu Yong-Shi (吴咏时) Exotic electronic states in the world of flat bands:From theory to material 2014 Chin. Phys. B 23 077308
|
[1] |
Castro Neto A H, Guinea F, Peres N M R, Novoselov R S and Geim A K 2009 Rev. Mod. Phys. 81 109
|
[2] |
Geim A K 2011 Rev. Mod. Phys. 83 851
|
[3] |
Mielke A 1991 J. Phys. A: Math. Gen. 24 L73
|
[4] |
Mielke A 1991 J. Phys. A: Math. Gen. 24 3311
|
[5] |
Mielke A 1992 J. Phys. A: Math. Gen. 25 4335
|
[6] |
Tasaki H 1992 Phys. Rev. Lett. 69 1608
|
[7] |
Zhang S, Hung H H and Wu C 2010 Phys. Rev. A 82 053618
|
[8] |
Miyahara S, Kusuta S and Furukawa N 2007 Physica C: Superconductivity 460 1145
|
[9] |
Wu C, Bergman D, Balents L and Das Sarma S 2007 Phys. Rev. Lett. 99 070401
|
[10] |
Wu C and Das Sarma S 2008 Phys. Rev. B 77 235107
|
[11] |
Xiao D, Chang M C and Niu Q 2010 Rev. Mod. Phys. 82 1959
|
[12] |
Thouless D J, Kohmoto M, Nightingale M P and Den Nijs M 1982 Phys. Rev. Lett. 49 405
|
[13] |
Haldane F D M 1988 Phys. Rev. Lett. 61 2015
|
[14] |
Qi X, Wu Y S and Zhang S 2006 Phys. Rev. B 74 085308
|
[15] |
Kane C L and Mele E J 2005 Phys. Rev. Lett. 95 146802
|
[16] |
Hasan M Z and Kane C L 2010 Rev. Mod. Phys. 82 3045
|
[17] |
Qi X L and Zhang S C 2011 Rev. Mod. Phys. 83 1057
|
[18] |
Tang E, Mei J W and Wen X G 2011 Phys. Rev. Lett. 106 236802
|
[19] |
Sun K, Gu Z, Katsura H and Das Sarma S 2011 Phys. Rev. Lett. 106 236803
|
[20] |
Neupert T, Santos L, Chamon C and Mudry C 2011 Phys. Rev. Lett. 106 236804
|
[21] |
Sheng D N, Gu Z C, Sun K and Sheng L 2011 Nat. Commun. 2
|
[22] |
Regnault N and Bernevig B A 2011 Phys. Rev. X 1 021014
|
[23] |
Nayak C, Simon S H, Stern A, Freedman M and Sarma S D 2008 Rev. Mod. Phys. 80 1083
|
[24] |
Tasaki H 1998 Progress of Theoretical Physics 99 489
|
[25] |
Parameswaran S A, Roy R and Sondhi S L 2013 Comptes Rendus Physique 14 816
|
[26] |
Bergholtz E J and Liu Z 2013 Int. J. Mod. Phys. B 27
|
[27] |
Cooper N R and Dalibard J 2013 Phys. Rev. Lett. 110 185301
|
[28] |
Yao N Y, Laumann C R, Gorshkov A V, Bennett S D, Demler E, Zoller P and Lukin M D 2012 Phys. Rev. Lett. 109 266804
|
[29] |
Yao N Y, Gorshkov A V, Laumann C R, Luchli A M, Ye J and Lukin M D 2013 Phys. Rev. Lett. 110 185302
|
[30] |
Derzhko O, Richter J, Honecker A and Schmidt H J 2007 Low Temperature Physics 33 745
|
[31] |
Miyahara S, Kubo K, Ono H, Shimomura Y and Furukawa N 2005 J. Phys. Soc. Jpn. 74 1918
|
[32] |
Bergman D L, Wu C and Balents L 2008 Phys. Rev. B 78 125104
|
[33] |
Cardona M and Peter Y Y 2005 Fundamentals of Semiconductors (Berlin: Springer)
|
[34] |
Vidal J, Mosseri R and Doucot B 1998 Phys. Rev. Lett. 81 5888
|
[35] |
Wen X G 2004 Quantum Field Theory of Many-body Systems from the Origin of Sound to an Origin of Light and Electrons (New York: Oxford University Press Inc.)
|
[36] |
Thouless D J 1984 J. Phys. C: Solid State Phys. 17 L325
|
[37] |
Liu Z,Wang Z F, Mei JW,Wu Y S and Liu F 2013 Phys. Rev. Lett. 110 106804
|
[38] |
Wu C 2008 Phys. Rev. Lett. 101 186807
|
[39] |
Zhang M, Hung H H, Zhang C andWu C 2011 Phys. Rev. A 83 023615
|
[40] |
Qi X L 2011 Phys. Rev. Lett. 107 126803
|
[41] |
Mermin N D and Wagner H 1966 Phys. Rev. Lett. 17 1133
|
[42] |
Maksymenko M, Honecker A, Moessner R, Richter J and Derzhko O 2012 Phys. Rev. Lett. 109 096404
|
[43] |
Nagaoka Y 1966 Phys. Rev. 147 392
|
[44] |
Alexandrov A S 2010 Theory of Superconductivity: from Weak to Strong Coupling (New York: CRC Press)
|
[45] |
Stormer H L, Tsui D C and Gossard A C 1999 Rev. Mod. Phys. 71 S298
|
[46] |
Niu Q, Thouless D J and Wu Y S 1985 Phys. Rev. B 31 3372
|
[47] |
Haldane F D M 1991 Phys. Rev. Lett. 67 937
|
[48] |
Wu Y S 1994 Phys. Rev. Lett. 73 922
|
[49] |
Su W P, Wu Y S and Yang J 1996 Phys. Rev. Lett. 77 3423
|
[50] |
Levin M and Wen X G 2006 Phys. Rev. Lett. 96 110405
|
[51] |
Li H and Haldane F D M 2008 Phys. Rev. Lett. 101 010504
|
[52] |
Kitaev A and Preskill J 2006 Phys. Rev. Lett. 96 110404
|
[53] |
Li W, Liu Z, Wu Y S and Chen Y 2014 Phys. Rev. B 89 125411
|
[54] |
Jones R O and Gunnarsson O 1989 Rev. Mod. Phys. 61 689
|
[55] |
Lee P A 2008 Science 321 1306
|
[56] |
Balents L 2010 Nature 464 199
|
[57] |
Lacroix C, Mendels P and Mila F 2011 Introduction to Frustrated Magnetism: Materials, Experiments, Theory, Vol. 164 (Berlin: Springer)
|
[58] |
Nytko E A, Helton J S, Mller P and Nocera D G 2008 Journal of the American Chemical Society 130 2922
|
[59] |
Mei J W, Tang E and Wen X G 2011 arXiv:1102.2406
|
[60] |
Schulenburg J, Honecker A, Schnack J, Richter J and Schmidt H J 2002 Phys. Rev. Lett. 88 167207
|
[61] |
Sakamoto J, van Heijst J, Lukin O and Schluter A D 2009 Angewandte Chemie 48 1030
|
[62] |
Barth J V, Costantini G and Kern K 2005 Nature 437
|
[63] |
Wang Z F, Liu Z and Liu F 2013 Nat. Commun. 4 1471
|
[64] |
Wang Z F, Su N and Liu F 2013 Nano Letters 13 2842
|
[65] |
Wang Z F, Liu Z and Liu F 2013 Phys. Rev. Lett. 110 196801
|
[66] |
McKillop A, Smith J D and Worrall I J 1985 Organometallic Compounds of Aluminum, Gallium, Indium and Thallium (New York: Chapman and Hall/CRC)
|
[67] |
Kambe T, Sakamoto R, Hoshiko K, Takada K, Miyachi M, Ryu J H, Sasaki S, Kim J, Nakazato K and Takata M 2013 Journal of the American Chemical Society 135 2462
|
[68] |
Trescher M and Bergholtz E J 2012 Phys. Rev. B 86 241111
|
[69] |
Yang S, Gu Z C, Sun K and Sarma S D 2012 Phys. Rev. B 86 241112
|
[70] |
Wang Y F, Yao H, Gong C D and Sheng D N 2012 Phys. Rev. B 86 201101
|
[71] |
Lu Y M and Ran Y 2012 Phys. Rev. B 85 165134
|
[72] |
Wang Y F, Yao H, Gu Z C, Gong C D and Sheng D N 2012 Phys. Rev. Lett. 108 126805
|
[73] |
Weeks C and Franz M 2012 Phys. Rev. B 85 041104
|
[74] |
Li Y and Wu C 2013 Phys. Rev. Lett. 110 216802
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|