Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(6): 066804    DOI: 10.1088/1674-1056/23/6/066804

Sputtering pressure influence on growth morphology, surface roughness, and electrical resistivity for strong anisotropy beryllium film

Luo Bing-Chia b, Li Kaia b, Kang Xiao-Lia, Zhang Ji-Qianga, He Yu-Dana, Luo Jiang-Shana, Wu Wei-Donga b, Tang Yong-Jiana
a Research Center of Laser Fusion, ChinaAcademy of Engineering Physics, Mianyang 621900, China;
b Science and Technology on Plasma Physics Laboratory, Mianyang 621900, China
Abstract  The strong anisotropy beryllium (Be) films are fabricated at different sputtering pressures by direct current magnetron sputtering. With the increase of pressure, the deposition rate of Be film first increases, and when the pressure exceeds 0.8 Pa, it gradually descends. The X-ray diffraction analysis indicates that Be film is of α-Be phase, its surface always reveals the (101) crystal plane possessing the low surface energy. As for the growth morphology of Be film, the surface is mainly characterized by the fibrous grains, while the cross section shows a transition from a columnar grain to a mixed grain consisting of a cone-shaped grain and a columnar grain as the sputtering pressure increases. The large grain fraction decays exponentially from 75.0% to 59.3% with the increase of sputtering pressure p, which can improve the grain size uniformity. The surface roughness increases due to the insufficient atom diffusion, which is comparable to its decrease due to the etching effect at p < 0.8 Pa, while it increases drastically at p > 0.8 Pa, and this increase is dominated by the atom diffusion. The electrical resistivity values of Be films range from 1.7 uΩ·m to 2.7 uΩ·m in the range 0.4 Pa-1.2 Pa, which is 50 times larger than the bulk resistivity.
Keywords:  magnetron sputtering      growth morphology      Be films      electrical resistivity  
Received:  27 September 2013      Revised:  12 December 2013      Published:  15 June 2014
PACS:  68.55.-a (Thin film structure and morphology)  
  68.55.J- (Morphology of films)  
  68.55.Nq (Composition and phase identification)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11204280).
Corresponding Authors:  Luo Jiang-Shan     E-mail:

Cite this article: 

Luo Bing-Chi, Li Kai, Kang Xiao-Li, Zhang Ji-Qiang, He Yu-Dan, Luo Jiang-Shan, Wu Wei-Dong, Tang Yong-Jian Sputtering pressure influence on growth morphology, surface roughness, and electrical resistivity for strong anisotropy beryllium film 2014 Chin. Phys. B 23 066804

[1] Haan S W, Herrmann M C and Amendt P A 2006 Fusion Sci. Technol. 49 553
[2] Xu H W, Alford C S, Cooley J C, Dixon L A, Hackenberg R E, Letts S A, Moreno K A, Nikroo A, Wall J R and Youngblood K P 2007 Fusion Sci. Technol. 51 547
[3] Haan S W, Amendt P A and Callahan D A 2007 Fusion Sci. Technol. 51 509
[4] Moreno K A, Eddinger S and Fong J 2009 Fusion Sci. Technol. 55 349
[5] Haan S W, Callahan D A and Edwards M J 2009 Fusion Sci. Technol. 55 227
[6] Montgomery D S, Nobile A and Walsh P J 2004 Rev. Sci. Instrum. 75 3986
[7] Davydov D A, Kholopova O V and Kolbasov B N 2007 J. Nucl. Mater. 367 1079
[8] Nikroo A, Chen K C, Hoppe M L, Huang H, Wall J R, Xu H, McElfresh M W, Alford C S, Cook R C, Cooley J C, Fields R, Hackenberg R, Doerner R P and Baldwin M 2006 Phys. Plasmas 13 056302
[9] Blum V, Rath Ch, Müller S, Hammer L and Heinz K 1999 Phys. Rev. B 59 15966
[10] Singh S, Thiyagarajan P, Kant K M, Anita D, Thirupathiah S, Rama N, Tiwari B, Kottaisamy M and Rao M S R 2007 J. Phys. D: Appl. Phys. 40 6312
[11] Chou C Y, Yao Y D, Kuo P C, Cheng K W and Yu C 2006 J. Magn. Magn. Mater. 304 e103
[12] Yao X F, Wang J P, Zhou T J and Chong T C 2005 J. Appl. Phys. 93 8310
[13] Tikhinskij G F, Stoev P I, Papirov I I, Babun V A and Vasilév A A 1996 J. Nucl. Mater. 233 828
[14] Song D J, Zhang X M and Hu Q 2006 Mater. Rev. 20 66
[15] Wang H P, Chang J and Wei B 2009 J. Appl. Phys. 106 033506
[16] Ma X B, Wang H P, Zhou K, Chang J and Hong Z Y 2013 Appl. Phys. Lett. 103 104101
[17] Zhu Z W, Gao X D, Zhang Z B, Piao Y H, Hu C, Zhang D W and Wu D P 2012 Chin. Phys. B 21 087304
[18] Zhang L S, Yu H F and Guo Y Q 2012 Acta Phys. Sin. 61 016101 (in Chinese)
[19] Lutišan J and Cvengroš J 1995 Chem. Eng. J. 56 39
[20] Xie H B 1999 Vacuum 3 37
[1] CdS/Si nanofilm heterojunctions based on amorphous silicon films: Fabrication, structures, and electrical properties
Yong Li(李勇), Peng-Fei Ji(姬鹏飞), Yue-Li Song(宋月丽), Feng-Qun Zhou(周丰群), Hong-Chun Huang(黄宏春), and Shu-Qing Yuan(袁书卿). Chin. Phys. B, 2021, 30(2): 026101.
[2] RF magnetron sputtering induced the perpendicular magnetic anisotropy modification in Pt/Co based multilayers
Runze Li(李润泽), Yucai Li(李予才), Yu Sheng(盛宇), and Kaiyou Wang(王开友). Chin. Phys. B, 2021, 30(2): 028506.
[3] Influence of CdS films synthesized by different methods on the photovoltaic performance of CdTe/CdS thin film solar cells
Jun Wang(汪俊), Yuquan Wang(王玉全), Cong Liu(刘聪), Meiling Sun(孙美玲), Cao Wang(王操), Guangchao Yin(尹广超), Fuchao Jia(贾福超), Yannan Mu(牟艳男), Xiaolin Liu(刘笑林), Haibin Yang(杨海滨). Chin. Phys. B, 2020, 29(9): 098802.
[4] A general method for large-scale fabrication of Cu nanoislands/dragonfly wing SERS flexible substrates
Yuhong Wang(王玉红), Mingli Wang(王明利), Lin Shen(沈琳), Yanying Zhu(朱艳英), Xin Sun(孙鑫), Guochao Shi(史国超), Xiaona Xu(许晓娜), Ruifeng Li(李瑞峰), Wanli Ma(马万里). Chin. Phys. B, 2018, 27(1): 017801.
[5] Effect of substrate temperature on the morphological, structural, and optical properties of RF sputtered Ge1-xSnx films on Si substrate
H Mahmodi, M R Hashim. Chin. Phys. B, 2017, 26(5): 056801.
[6] Low-temperature phase transformation of CZTS thin films
Wei Zhao(赵蔚), Lin-Yuan Du(杜霖元), Lin-Lin Liu(刘林林), Ya-Li Sun(孙亚利), Zhi-Wei Liu(柳志伟), Xiao-Yun Teng(滕晓云), Juan Xie(谢娟), Kuang Liu(刘匡), Wei Yu(于威), Guang-Sheng Fu(傅广生), Chao Gao(高超). Chin. Phys. B, 2017, 26(4): 046402.
[7] General equation describing viscosity of metallic melts under horizontal magnetic field
Yipeng Xu(许亦鹏), Xiaolin Zhao(赵晓林), Tingliang Yan(颜廷亮). Chin. Phys. B, 2017, 26(3): 036601.
[8] Field emission properties of a-C and a-C:H films deposited on silicon surfaces modified with nickel nanoparticles
Jin-Long Jiang(姜金龙), Yu-Bao Wang(王玉宝), Qiong Wang(王琼), Hao Huang(黄浩), Zhi-Qiang Wei(魏智强), Jun-Ying Hao(郝俊英). Chin. Phys. B, 2016, 25(4): 048101.
[9] Thick c-BN films deposited by radio frequency magnetron sputtering in argon/nitrogen gas mixture with additional hydrogen gas
Yan Zhao(赵艳), Wei Gao(高伟), Bo Xu(徐博), Ying-Ai Li(李英爱), Hong-Dong Li(李红东), Guang-Rui Gu(顾广瑞), Hong Yin(殷红). Chin. Phys. B, 2016, 25(10): 106801.
[10] Effects of N2/O2 flow rate on the surface properties and biocompatibility of nano-structured TiOxNy thin films prepared by high vacuum magnetron sputtering
Sehrish Saleem, R. Ahmad, Uzma Ikhlaq, R. Ayub, Jin Wei Hong, Xu Rui Zhen, Li Peng Hui, Khizra Abbas, Paul K. Chu. Chin. Phys. B, 2015, 24(7): 075202.
[11] Effect of thermal pretreatment of metal precursor on the properties of Cu2ZnSnS4 films
Wang Wei, Shen Hong-Lie, Jin Jia-Le, Li Jin-Ze, Ma Yue. Chin. Phys. B, 2015, 24(5): 056805.
[12] Indium-tin oxide films obtained by DC magnetron sputtering for improved Si heterojunction solar cell applications
Gu Jin-Hua, Si Jia-Le, Wang Jiu-Xiu, Feng Ya-Yang, Gao Xiao-Yong, Lu Jing-Xiao. Chin. Phys. B, 2015, 24(11): 117703.
[13] Structures and optical properties of tungsten oxide thin films deposited by magnetron sputtering of WO3 bulk:Effects of annealing temperatures
Zhang Feng, Wang Hai-Qian, Wang Song, Wang Jing-Yang, Zhong Zhi-Cheng, Jin Ye. Chin. Phys. B, 2014, 23(9): 098105.
[14] Influence of magnetic layer thickness on [Fe80Ni20–O/SiO2]n multilayer thin films
Wei Jian-Qing, Geng Hao, Xu Lei, Wang Lai-Sen, Chen Yuan-Zhi, Yue Guang-Hui, Peng Dong-Liang. Chin. Phys. B, 2014, 23(8): 087504.
[15] Structural and electrical characterization of annealed Si1-xCx/SiC thin film prepared by magnetron sputtering
Huang Shi-Hua, Liu Jian. Chin. Phys. B, 2014, 23(5): 058105.
No Suggested Reading articles found!