Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(6): 066802    DOI: 10.1088/1674-1056/23/6/066802

Atomic diffusion across Ni50Ti50–Cu explosive welding interface:Diffusion layer thickness and atomic concentration distribution

Chen Shi-Yanga, Wu Zhen-Weia, Liu Kai-Xina b
a LTCS and Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing 100871, China;
b Center for Applied Physics and Technology, Peking University, Beijing 100871, China
Abstract  Molecular dynamics simulations are carried out to study atomic diffusion in the explosive welding process of Ni50Ti50-Cu (at.%). By using a hybrid method which combines molecular dynamics simulation and classical diffusion theory, the thickness of the diffusion layer and the atomic concentration distribution across the welding interface are obtained. The results indicate that the concentration distribution curves at different times have a geometric similarity. According to the geometric similarity, the atomic concentration distribution at any time in explosive welding can be calculated. Ni50Ti50-Cu explosive welding and scanning electron microscope experiments are done to verify the results. The simulation results and the experimental results are in good agreement.
Keywords:  diffusion      interfaces      explosive welding      molecular dynamics  
Received:  07 October 2013      Revised:  11 December 2013      Published:  15 June 2014
PACS:  68.35.Fx (Diffusion; interface formation)  
  02.70.Ns (Molecular dynamics and particle methods)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 10732010, 10972010, 11332002, and 11028206).
Corresponding Authors:  Liu Kai-Xin     E-mail:

Cite this article: 

Chen Shi-Yang, Wu Zhen-Wei, Liu Kai-Xin Atomic diffusion across Ni50Ti50–Cu explosive welding interface:Diffusion layer thickness and atomic concentration distribution 2014 Chin. Phys. B 23 066802

[1] Kacar R and Acarer M 2004 J. Mater. Process. Technol. 152 91
[2] Grignon F, Benson D, Vecchio K S and Meyers M A 2004 Int. J. Impact. Eng. 30 1333
[3] Acarer M, Gulenc B and Findik F 2003 Mater. Design 24 659
[4] Acarer M and Demir B 2008 Mater. Lett. 62 4158
[5] Ashani J Z and Bagheri S M 2009 Materialwiss. Werkst. 40 690
[6] Liu K X, Liu W D, Wang J T, Yan H H, Li X J, Huang Y J, Wei X S and Shen J 2008 Appl. Phys. Lett. 93 081918
[7] Durgutlu A, Gulenc B and Findik F 2005 Mater. Design 26 497
[8] Findik F 2011 Mater. Design 32 1081
[9] Vaidyanathan P V and Ramanathan A 1993 J. Mater. Process. Technol. 38 501
[10] Abe A 1999 J. Mater. Process. Technol. 85 162
[11] Wu F M, Li Q W and Wu Z Q 2000 Chin. Phys. 9 672
[12] Cao B, Li G P, Chen X M, Cho S J and Kim H 2008 Chin. Phys. Lett. 25 1400
[13] Akbari Mousavi S A A and Sartangi P F 2008 Mater. Sci. Eng. A: Struct. 494 329
[14] Hokamoto K, Nakata K, Mori A, Ii S, Tomoshige R, Tsuda S, Tsumura T and Inoue A 2009 J. Alloys Compd. 485 817
[15] Shi Y and Falk M L 2008 Acta Mater. 56 995
[16] Cao A J, Cheng Y Q and Ma E 2009 Acta Mater. 57 5146
[17] Sun Y B, Luo Y, Wang X D and Feng Y Q 2011 Adv. Mater. Res. 217-218 45
[18] Şopu D, Ritter Y, Gleiter H and Albe K 2011 Phys. Rev. B 83 100202
[19] Shao J L, Wang P, He A M, Duan S Q and Qin C S 2013 J. Appl. Phys. 113 153501
[20] Verners O, Shin Y K and van Duin A C T 2013 J. Appl. Phys. 114 023501
[21] Chen Z H, Yu Z Y, Lu P F and Liu Y M 2009 Chin. Phys. B 18 4591
[22] Chen S, Ke F, Zhou M and Bai Y 2007 Acta Mater. 55 3169
[23] Delogu F 2010 Phys. Rev. B 82 205415
[24] Zhao S, Germann T and Strachan A 2007 Phys. Rev. B 76 104105
[25] Chen S Y, Wu Z W, Liu K X, Li X J, Luo N and Lu G X 2013 J. Appl. Phys. 113 044901
[26] Plimpton S 1995 J. Comput. Phys. 117 1
[27] Zhou X W, Johnson R A and Wadley H N G 2004 Phys. Rev. B 69 144113
[28] Michal G M and Sinclair R 1981 Acta Crystallogr. B 37 1803
[29] Evans D J and Holian B L H 1985 J. Chem. Phys. 83 4069
[30] Wronka B 2010 J. Mater. Sci. 45 3465
[31] Yan H, Qu Y and Li X 2008 Combust. Explo. Shock+ 44 491
[1] Optical properties of several ternary nanostructures
Xiao-Long Tang(唐小龙), Xin-Lu Cheng(程新路), Hua-Liang Cao(曹华亮), and Hua-Dong Zeng(曾华东). Chin. Phys. B, 2021, 30(1): 017803.
[2] Tolman length of simple droplet: Theoretical study and molecular dynamics simulation
Shu-Wen Cui(崔树稳), Jiu-An Wei(魏久安), Qiang Li(李强), Wei-Wei Liu(刘伟伟), Ping Qian(钱萍), and Xiao Song Wang(王小松). Chin. Phys. B, 2021, 30(1): 016801.
[3] Multi-phase-field simulation of austenite peritectic solidification based on a ferrite grain
Chao Yang(杨超), Jing Wang(王静), Junsheng Wang(王俊升), Yu Liu(刘瑜), Guomin Han(韩国民), Haifeng Song(宋海峰), and Houbing Huang(黄厚兵). Chin. Phys. B, 2021, 30(1): 018201.
[4] Size effect of He clusters on the interactions with self-interstitial tungsten atoms at different temperatures
Jinlong Wang(王金龙), Wenqiang Dang(党文强), Daping Liu(刘大平), Zhichao Guo(郭志超). Chin. Phys. B, 2020, 29(9): 093101.
[5] Oscillation of S5 helix under different temperatures in determination of the open probability of TRPV1 channel
Tie Li(李铁), Jun-Wei Li(李军委), Chun-Li Pang(庞春丽), Hailong An(安海龙), Yi-Zhao Geng(耿轶钊), Jing-Qin Wang(王景芹). Chin. Phys. B, 2020, 29(9): 098701.
[6] Active Brownian particles simulated in molecular dynamics
Liya Wang(王丽雅), Xinpeng Xu(徐新鹏), Zhigang Li(李志刚), Tiezheng Qian(钱铁铮). Chin. Phys. B, 2020, 29(9): 090501.
[7] Mesoscale eddies and their dispersive environmental impacts in the Persian Gulf
Amin Raeisi, Abbasali Bidokhti, Seyed Mohammad Jafar Nazemosadat, Kamran Lari. Chin. Phys. B, 2020, 29(8): 084701.
[8] Measurement and verification of concentration-dependent diffusion coefficient: Ray tracing imagery of diffusion process
Li Wei(魏利), Wei-Dong Meng(孟伟东), Li-Cun Sun(孙丽存), Xin-Fei Cao(曹新飞), Xiao-Yun Pu(普小云). Chin. Phys. B, 2020, 29(8): 084206.
[9] Fast and accurate determination of phase transition temperature via individual generalized canonical ensemble simulation
Ming-Zhe Shao(邵明哲), Yan-Ting Wang(王延颋), Xin Zhou(周昕). Chin. Phys. B, 2020, 29(8): 080505.
[10] Spontaneous growth of the reconnection electric field during magnetic reconnection with a guide field: A theoretical model and particle-in-cell simulations
Kai Huang(黄楷), Quan-Ming Lu(陆全明), Rong-Sheng Wang(王荣生), Shui Wang(王水). Chin. Phys. B, 2020, 29(7): 075202.
[11] Different potential of mean force of two-state protein GB1 and downhill protein gpW revealed by molecular dynamics simulation
Xiaofeng Zhang(张晓峰), Zilong Guo(郭子龙), Ping Yu(余平), Qiushi Li(李秋实), Xin Zhou(周昕), Hu Chen(陈虎). Chin. Phys. B, 2020, 29(7): 078701.
[12] Understanding the Li diffusion mechanism and positive effect of current collector volume expansion in anode free batteries
Yan Zhuang(庄严), Zheyi Zou(邹喆乂), Bo Lu(吕浡), Yajie Li(李亚捷), Da Wang(王达), Maxim Avdeev, Siqi Shi(施思齐). Chin. Phys. B, 2020, 29(6): 068202.
[13] Determination of activation energy of ion-implanted deuterium release from W-Y2O3
Xue-Feng Wang(王雪峰), Ji-Liang Wu(吴吉良), Qiang Li(李强), Rui-Zhu Yang(杨蕊竹), Zhan-Lei Wang(王占雷), Chang-An Chen(陈长安), Chun-Rong Feng(冯春蓉), Yong-Chu Rao(饶咏初), Xiao-Hong Chen(谌晓洪), Xiao-Qiu Ye(叶小球). Chin. Phys. B, 2020, 29(6): 065205.
[14] Balancing strength and plasticity of dual-phase amorphous/crystalline nanostructured Mg alloys
Jia-Yi Wang(王佳怡), Hai-Yang Song(宋海洋), Min-Rong An(安敏荣), Qiong Deng(邓琼), Yu-Long Li(李玉龙). Chin. Phys. B, 2020, 29(6): 066201.
[15] Diffusion and collective motion of rotlets in 2D space
Daiki Matsunaga, Takumi Chodo, Takuma Kawai. Chin. Phys. B, 2020, 29(6): 064705.
No Suggested Reading articles found!