Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(4): 048501    DOI: 10.1088/1674-1056/23/4/048501
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Charge transport in monolayer poly(3-hexylthiophene) thin-film transistors

Xu Zong-Xianga, Roy V. A. L.b
a Department of Chemistry, South University of Science and Technology of China, Shenzhen 518055, China;
b Center Of Superdiamond and Advanced Films (COSDAF), Department of Physics and Materials Science,City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR, China
Abstract  It is found that ultrathin poly(3-hexylthiophene) (P3HT) film with a 2.5 nm-thick layer exhibits a higher mobility of 5.0× 10-2 cm2/V·s than its bulk counterpart. The crystalline structure of the as-fabricated ultrathin P3HT layer is verified by atomic force microscopy as well as grazing incidence X-ray diffraction. Transient measurements of the as-fabricated transistors reveal the influence of the interface traps on charge transport. These results are explained by the trap energy level distribution at the interface manipulated by layers of polymer film.
Keywords:  field-effect transistor      monolayer P3HT      spin coating      grazing incidence X-ray diffraction  
Received:  16 July 2013      Revised:  13 August 2013      Accepted manuscript online: 
PACS:  85.30.Tv (Field effect devices)  
  72.80.Le (Polymers; organic compounds (including organic semiconductors))  
  81.05.Fb (Organic semiconductors)  
Fund: Project supported by the Special Funds for the Development of Strategic Emerging Industries in Shenzhen City, China (Grant No. JCYJ20120830154526537), the Start-up Funding of South University of Science and Technology of China, and the Strategic Research Grant of City University of Hong Kong of China (Grant No. 7002724).
Corresponding Authors:  Xu Zong-Xiang     E-mail:  xu.zx@sustc.edu.cn
About author:  85.30.Tv; 72.80.Le; 81.05.Fb

Cite this article: 

Xu Zong-Xiang, Roy V. A. L. Charge transport in monolayer poly(3-hexylthiophene) thin-film transistors 2014 Chin. Phys. B 23 048501

[1] Horowitz G 1998 Adv. Mater. 10 365
[2] Tian X Y, Xu Z, Zhao S L, Zhang F J, Xu X R, Yuan G C, Li J, Sun Q J and Wang Y 2009 Chin. Phys. B 18 5078
[3] Zhou J L and Niu Q L 2010 Chin. Phys. B 19 077305
[4] Roberts M E, Mannsfeld S C B, Stoltenberg R M and Bao Z N 2009 Org. Electron. 10 377
[5] Roberts M E, Sokolov A N and Bao Z N 2009 J. Mater. Chem. 19 3351
[6] Muccini M 2006 Nat. Mater. 5 605
[7] Chabinyc M L and Salleo A 2004 Chem. Mater. 16 4509
[8] Kim D H, Park Y D, Jang Y, Yang H, Kim Y H, Han J I, Moon D G, Park S, Chang T, Chang C, Joo M, Ryu C Y and Cho K 2005 Adv. Funct. Mater. 15 77
[9] Chen W B, Xu Z X, Li K, Chui S S Y, Roy V A L, Lai P T and Che C M 2012 Chin. Phys. B 21 078401
[10] Sirringhaus H, Brown P J, Friend R H, Nielsen M M, Bechgaard K, Langeveld-Voss B M W, Spiering A J H, Jassen R A J, Meijer E W, Herwig P and De Leeuw D M 1999 Nature 401 685
[11] Kline R J, McGehee M D, Kadnikova E N, Liu J and Frechet J M J 2003 Adv. Mater. 15 1519
[12] Bao Z, Dodabalapur A and Lovinger A J 1996 Appl. Phys. Lett. 69 4108
[13] Sirringhaus H, Friend R H and Tessler N 1998 Science 280 1741
[14] Wang G, Swensen J, Moses D and Heeger A J 2003 J. Appl. Phys. 93 6137
[15] Gburek B and Wagner V 2010 Org. Electron. 11 814
[16] Wang G M, Hirasa T, Moses D and Heeger A J 2001 Synth. Met. 146 127
[17] Aleshin A N, Sandberg H and Stubb H 2001 Synth. Met. 121 1449
[18] Tian X Y, Xu Z, Zhao S L, Zhang F J, Yuan G C, Li J, Sun Q J, Wan Y and Xu X R 2010 Chin. Phys. B 19 018103
[19] Low K H, Xu Z X, Xiang H F, Chui S S Y, Roy V A L and Che C M 2011 Chem. Asian J. 6 3223
[20] Ruiz R, Papadimitratos A, Mayer A C and Malliaras G G 2005 Adv. Mater. 17 1798
[21] Dinelli F, Murgia M, Levy P, Cavallini M and Biscarini F 2004 Phys. Rev. Lett. 92 116802
[22] Yamamoto K, Ochiai S, Wang X, Uchida Y, Kojima K, Ohashi A and Mizutani T 2008 Thin Solid Film 516 2695
[23] Sandberg H G O, Frey G L, Shkunov M N, Sirringhaus H and Friend R H 2002 Langmuir 18 10176
[24] Pernstich K P, Haas S, Oberhoff D, Goldman C, Gundlach D J, Batlogg B, Rashid A N and Schitter G 2004 J. Appl. Phys. 96 6431
[25] Stallinga P, Gomes H L, Biscarini F, Murgia M and Leeuw D M J 2004 J. Appl. Phys. 96 5277
[26] Podzorov V, Menard E, Borissov A, Kiryukhin V, Rogers J A and Gershenson M E 2004 Phys. Rev. Lett. 93 086602
[27] Xu Z X, Roy V A L, Stallinga P, Muccini M, Toffanin S, Xiang H F and Che C M 2007 Appl. Phys. Lett. 90 223509
[28] Chen X Y, Zhu H and Wang S D 2010 Appl. Phys. Lett. 97 243301
[1] Device physics and design of FD-SOI JLFET with step-gate-oxide structure to suppress GIDL effect
Bin Wang(王斌), Xin-Long Shi(史鑫龙), Yun-Feng Zhang(张云峰), Yi Chen(陈伊), Hui-Yong Hu(胡辉勇), and Li-Ming Wang(王利明). Chin. Phys. B, 2021, 30(4): 047401.
[2] Lateral depletion-mode 4H-SiC n-channel junction field-effect transistors operational at 400 °C
Si-Cheng Liu(刘思成), Xiao-Yan Tang(汤晓燕), Qing-Wen Song(宋庆文), Hao Yuan(袁昊), Yi-Meng Zhang(张艺蒙), Yi-Men Zhang(张义门), and Yu-Ming Zhang(张玉明). Chin. Phys. B, 2021, 30(2): 028503.
[3] Characteristic enhancement in tunnel field-effect transistors via introduction of vertical graded source
Zhijun Lyu(吕智军), Hongliang Lu(吕红亮), Yuming Zhang(张玉明), Yimen Zhang(张义门), Bin Lu(芦宾), Yi Zhu(朱翊), Fankang Meng(孟凡康), Jiale Sun(孙佳乐). Chin. Phys. B, 2020, 29(5): 058501.
[4] Modeling electric field of power metal-oxide-semiconductor field-effect transistor with dielectric trench based on Schwarz-Christoffel transformation
Zhi-Gang Wang(汪志刚), Tao Liao(廖涛), Ya-Nan Wang(王亚南). Chin. Phys. B, 2019, 28(5): 058503.
[5] Stacked lateral double-diffused metal-oxide-semiconductor field effect transistor with enhanced depletion effect by surface substrate
Qi Li(李琦), Zhao-Yang Zhang(张昭阳), Hai-Ou Li(李海鸥), Tang-You Sun(孙堂友), Yong-He Chen(陈永和), Yuan Zuo(左园). Chin. Phys. B, 2019, 28(3): 037201.
[6] Hunting down the ohmic contact of organic field-effect transistor
M Micjan, M Novota, P Telek, M Donoval, M Weis. Chin. Phys. B, 2019, 28(11): 118501.
[7] Analysis of non-uniform hetero-gate-dielectric dual-material control gate TFET for suppressing ambipolar nature and improving radio-frequency performance
Hui-Fang Xu(许会芳), Jian Cui(崔健), Wen Sun(孙雯), Xin-Feng Han(韩新风). Chin. Phys. B, 2019, 28(10): 108501.
[8] Optimization of ambipolar current and analog/RF performance for T-shaped tunnel field-effect transistor with gate dielectric spacer
Ru Han(韩茹), Hai-Chao Zhang(张海潮), Dang-Hui Wang(王党辉), Cui Li(李翠). Chin. Phys. B, 2019, 28(1): 018505.
[9] Review of gallium oxide based field-effect transistors and Schottky barrier diodes
Zeng Liu(刘增), Pei-Gang Li(李培刚), Yu-Song Zhi(支钰崧), Xiao-Long Wang(王小龙), Xu-Long Chu(褚旭龙), Wei-Hua Tang(唐为华). Chin. Phys. B, 2019, 28(1): 017105.
[10] Ge/Si heterojunction L-shape tunnel field-effect transistors with hetero-gate-dielectric
Cong Li(李聪), Zhi-Rui Yan(闫志蕊), Yi-Qi Zhuang(庄奕琪), Xiao-Long Zhao(赵小龙), Jia-Min Guo(郭嘉敏). Chin. Phys. B, 2018, 27(7): 078502.
[11] Effect of substrate curvature on thickness distribution of polydimethylsiloxane thin film in spin coating process
Ying Yan(闫英), Ping Zhou(周平), Shang-Xiong Zhang(张尚雄), Xiao-Guang Guo(郭晓光), Dong-Ming Guo(郭东明). Chin. Phys. B, 2018, 27(6): 068104.
[12] Parasitic source resistance at different temperatures for AlGaN/AlN/GaN heterostructure field-effect transistors
Yan Liu(刘艳), Zhao-Jun Lin(林兆军), Yuan-Jie Lv(吕元杰), Peng Cui(崔鹏), Chen Fu(付晨), Ruilong Han(韩瑞龙), Yu Huo(霍宇), Ming Yang(杨铭). Chin. Phys. B, 2017, 26(9): 097104.
[13] Analytical capacitance model for 14 nm FinFET considering dual-k spacer
Fang-Lin Zheng(郑芳林), Cheng-Sheng Liu(刘程晟), Jia-Qi Ren(任佳琪), Yan-Ling Shi(石艳玲), Ya-Bin Sun(孙亚宾), Xiao-Jin Li(李小进). Chin. Phys. B, 2017, 26(7): 077303.
[14] A review for compact model of graphene field-effect transistors
Nianduan Lu(卢年端), Lingfei Wang(汪令飞), Ling Li(李泠), Ming Liu(刘明). Chin. Phys. B, 2017, 26(3): 036804.
[15] Heteromaterial-gate line tunnel field-effect transistor based on Si/Ge heterojunction
Shuqin Zhang(张书琴), Renrong Liang(梁仁荣), Jing Wang(王敬), Zhen Tan(谭桢), Jun Xu(许军). Chin. Phys. B, 2017, 26(1): 018504.
No Suggested Reading articles found!