A GaN–AlGaN–InGaN last quantum barrier in an InGaN/GaN multiple-quantum-well blue LED
Yang Bin (杨斌), Guo Zhi-You (郭志友), Xie Nan (解楠), Zhang Pan-Jun (张盼君), Li Jing (李婧), Li Fang-Zheng (李方正), Lin Hong (林宏), Zheng Huan (郑欢), Cai Jin-Xin (蔡金鑫)
Laboratory of Nanophotonic Functional Materials and Devices, Institute of Optoelectronic Materials and Technology,South China Normal University, Guangzhou 510631, China
Abstract The advantages of a GaN-AlGaN-InGaN last quantum barrier (LQB) in an InGaN-based blue light-emitting diode are analyzed via numerical simulation. We found an improved light output power, lower current leakage, higher recombination rate, and less efficiency droop compared with conventional GaN LQBs. These improvements in the electrical and optical characteristics are attributed mainly to the specially designed GaN-AlGaN-InGaN LQB, which enhances electron confinement and improves hole injection efficiency.
About author: 85.60.Jb; 68.65.Ac; 78.66.Fd; 78.67.De
Cite this article:
Yang Bin (杨斌), Guo Zhi-You (郭志友), Xie Nan (解楠), Zhang Pan-Jun (张盼君), Li Jing (李婧), Li Fang-Zheng (李方正), Lin Hong (林宏), Zheng Huan (郑欢), Cai Jin-Xin (蔡金鑫) A GaN–AlGaN–InGaN last quantum barrier in an InGaN/GaN multiple-quantum-well blue LED 2014 Chin. Phys. B 23 048502
[1]
Lu T P, Li S T, Zhang K, Liu C, Xiao G W, Zhou Y G, Zheng S W, Yin Y A, Wu L J, Wang H L and Yang X D 2011 Chin. Phys. B 20 108504
[2]
Gong C C, Fan G H, Zhang Y Y, Xu Y Q, Liu X P, Zheng S W, Yao G R and Zhou D T 2012 Chin. Phys. B 21 068505
[3]
Xiong J Y, Zhao F, Fan G H, Xu Y Q, Liu X P, Song J J, Ding B B, Zhang T and Zheng S W 2013 Chin. Phys. B 22 118504
[4]
Ding B B, Zhao F, Song J J, Xiong J Y, Zheng S W, Zhang Y Y, Xu Y Q, Zhou D T, Yu X P, Zhang H X, Zhang T and Fan G H 2013 Chin. Phys. B 22 088503
[5]
Xie J, Ni X, Fan Q, Shimada R, Özgür Ü and Morkoc H 2008 Appl. Phys. Lett. 93 121107
[6]
Rozhansky I V and Zakheim D A 2006 Phys. Status Solidi C 3 2160
[7]
Schubert M F, Chhajed S, Kim J K, Schubert E F, Koleske D D, Crawford M H, Lee S R, Fischer A J, Thaler G and Banas M A 2007 Appl. Phys. Lett. 91 231114
[8]
Schubert M F, Xu J, Kim K J, Schubert E, Kim M H, Yoon S, Lee S M, Sone C, Sakong T and Park Y 2008 Appl. Phys. Lett. 93 041102
[9]
Monemar B and Sernelius B E 2007 Appl. Phys. Lett. 91 181103
[10]
Ghazai A J, Thahab S M, Hassan H A and Hassan Z 2011 Opt. Express 19 009245
[11]
Shen Y C, Mueller G O, Watanabe S, Gardner N F, Munkholm A and Krames M R 2007 Appl. Phys. Lett. 91 141101
[12]
Delaney K T, Rinke P and Walle C G 2009 Appl. Phys. Lett. 94 191109
[13]
Vurgaftman I and Meyer J R 2003 J. Appl. Phys. 94 3675
[14]
Wang C H, Chang S P, Ku P H, Li J C, Lan Y P, Lin C C, Yang H C, Kuo H C, Lu T C, Wang S C and Chang C Y 2011 Appl. Phys. Lett. 99 171106
[15]
Hwang S Y, Woo J H, Kim J K, Xu J R, Cho J and Schubert E F 2011 Appl. Phys. Lett. 99 181115
[16]
David A, Grundmann M J, Kaeding J F, Gardner N F, Mihopoulos T G, and Krames M 2008 Appl. Phys. Lett. 92 053502
[17]
Liu J P, Ryou J, Dupuis R D, Han J, Shen G D and Wang H B 2008 Appl. Phys. Lett. 93 021102
[18]
Kuo Y K, Tsai M C, Yen S H, Hsu T C and Shen Y J 2010 IEEE J. Quantum Electron. 46 1214
[19]
Yen S H, Tsai M L, Tsai M C, Chang S J and Kuo Y K 2010 IEEE Photon. Technol. Lett. 22 1787
[20]
Liu X P, Fan G, Zheng S W, Gong C C, Lu T P, Zhang Y Y, Xu Y Q and Zhang T 2013 Sci. China: Tech. Sci. 56 98
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.