Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(4): 047307    DOI: 10.1088/1674-1056/23/4/047307
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Electronic and transport properties of V-shaped defect zigzag MoS2 nanoribbons

Li Xin-Meia, Long Meng-Qiua, Cui Li-Linga b, Xiao Jina, Xu Huia
a Institute of Super-microstructure and Ultrafast Process in Advanced Materials, School of Physics and Electronics,Central South University, Changsha 410083, China;
b School of Science, Hunan University of Technology, Zhuzhou 412007, China
Abstract  Based on the nonequilibrium Green's function (NEGF) in combination with density functional theory (DFT) calculations, we study the electronic structures and transport properties of zigzag MoS2 nanoribbons (ZMNRs) with V-shaped vacancy defects on the edge. The vacancy formation energy results show that the zigzag vacancy is easier to create on the edge of ZMNR than the armchair vacancy. Both of the defects can make the electronic band structures of ZMNRs change from metal to semiconductor. The calculations of electronic transport properties depict that the currents drop off clearly and rectification ratios increase in the defected systems. These effects would open up possibilities for their applications in novel nanoelectronic devices.
Keywords:  transport property      zigzag MoS2 nanoribbons      V-shaped defect      first-principles  
Received:  09 August 2013      Revised:  10 September 2013      Accepted manuscript online: 
PACS:  73.63.-b (Electronic transport in nanoscale materials and structures)  
  73.23.-b (Electronic transport in mesoscopic systems)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 21103232, 51272291, and 11174371).
Corresponding Authors:  Long Meng-Qiu, Xu Hui     E-mail:  mqlong@csu.edu.cn;cmpxhg@csu.edu.cn
About author:  73.63.-b; 73.23.-b

Cite this article: 

Li Xin-Mei, Long Meng-Qiu, Cui Li-Ling, Xiao Jin, Xu Hui Electronic and transport properties of V-shaped defect zigzag MoS2 nanoribbons 2014 Chin. Phys. B 23 047307

[1] Tawinan C and Walter R L L 2012 Phys. Rev. B 85 205302
[2] Fornarini L, Stirpe F and Scrosati B 1981 Solar Energy Mater. 5 107
[3] Zong X, Yan H J, Wu G P, Ma G J, Wen F Y, Wang L and Li C 2008 J. Am. Chem. Soc. 130 7176
[4] Xiang Q J, Yu J G and Jaroniec 2012 J. Am. Chem. Soc. 134 6575
[5] Hu K H, Hu X G, Wang J, Xu Y F and Han C L 2012 Tribol. Lett. 47 79
[6] Tian L, Zhou Q L, Zhao K, Shi Y L, Zhao D M, Zhao S Q, Zhao H, Bao R M, Zhu S M, Miao Q and Zhang C L 2011 Chin. Phys. B 20 010703
[7] Eda G, Yamaguchi H, Voiry D, Fujita T, Chen M W and Chhowalla M 2011 Nano Lett. 11 5111
[8] Coleman J N, Lotya M, O'Neill A, Bergin S D, King P J, Khan U, Young K, Gaucher A, De S, Smith R J, Shvets I V, Arora S K, Stanton G, Kim H Y, Lee K, Kim G T, Duesberg G S, Hallam T, Boland J J, Wang J J, Donegan J F, Grunlan J C, Moriarty G, Shmeliov A, Nicholls R J, Perkins J M, Grieveson E M, Theuwissen K, McComb D W, Nellist P D and Nicolosi V 2011 Science 331 568
[9] Lee Y H, Zhang X Q, Zhang W J, Chang M T, Lin C T, Chang K D, Yu Y C, Qang J T W, Chang C S, Li L J and Lin T W 2012 Adv. Mater. 24 2320
[10] Smith R J, King P J, Lotya M, Wirtz C, Khan U, De S, O'Neill A, Duesberg G S, Grunlan J C, Moriarty G, Chen J, Wang J Z, Minett A I, Nicolosi V and Coleman J N 2011 Adv. Mater. 23 3944
[11] Shi Y M, Zhou W, Lu A Y, Fang W J, Lee Y H, Hsu A L, Kim S M, Kin K K, Yang H Y, Li L J, Idrobo J C and Kong J 2012 Nano Lett. 12 2784
[12] Lee H S, Min S W, Chang Y G, Park M K, Nam T, Kim H, Kim J H, Ryu S and Im S 2012 Nano Lett. 12 3695
[13] Zhang Y J, Ye J T, Matsuhashi Y and Iwasa Y 2012 Nano Lett. 12 1136
[14] Yin Z Y, Li H, Li H, Jiang L, Shi Y M, Sun Y H, Lu G, Zhang Q, Chen X D and Zhang H 2012 ACS Nano. 6 74
[15] Radisavljevic B, Whitwick M B and Kis A 2012 Appl. Phys. Lett. 101 043103
[16] Alkis S, Öztas T, Aygün L E, Bozkurt F, Okyay A K and Ortac B 2012 Opt. Express 20 21815
[17] Li Q, Newberg J T, Walter E C, Hemminge R J C and Penner R M 2004 Nano Lett. 4 277
[18] Wang Z, Li H, Liu Z, Shi Z, Lu J, Suenaga K, Joung S K, Okazaki T, Gu Z, Zhou J, Gao Z, Li G, Sanvito S, Wang E and Lijima S 2010 J. Am. Chem. Soc. 132 13840
[19] Li Y F, Zhou Z, Zhang S B and Chen Z F 2008 J. Am. Chem. Soc. 130 16739
[20] Ataca C, Sahin H, Aktürk E and Ciraci S 2011 J. Phys. Chem. C 115 3934
[21] Pan H and Zhang Y W 2012 J. Mater. Chem. 22 7280
[22] Pan H and Zhang Y W 2012 J. Phys. Chem. C 116 11752
[23] Cuong N T, Otani M and Okada S 2013 Phys. Rev. B 87 045424
[24] Yu X X, Xie Y E, Ouyang T and Chen Y P 2012 Chin. Phys. B 21 107202
[25] Chen L N, Ma S S, Ouyang F P, Wu X Z, Xiao J and Xu H 2010 Chin. Phys. B 19 097301
[26] Tian H Y and W J 2012 Chin. Phys. B 21 017203
[27] Yang S Q, Li D X, Zhang T R, Tao Z L and Chen J 2012 J. Phys. Chem. C 116 1307
[28] Erdogan E, Popov I H, Enyashin A N and Seifert G 2012 Eur. Phys. J. B 85 33
[29] Shidpour R and Manteghian M 2010 Nanoscale 2 1429
[30] Zhang X J, Chen K Q, Tang L M and Long M Q 2011 Phys. Lett. A 375 3319
[31] Kohn W and Sham L J 1965 Phys. Rev. A 140 1133
[32] Hohenberg P and Kohn W 1964 Phys. Rev. B 136 864
[33] John P P, Kieron B and Matthias E 1996 Phys. Rev. Lett. 77 3865
[34] Kresse G and Hafner J 1993 Phys. Rev. B 47 558
[35] Kresse G and Furthmuller J 1996 Phys. Rev. B 54 11169
[36] Brandbyge M, Mozos J L, Ordejón P, Taylor J and Stokbro K 2002 Phys. Rev. B 65 165401
[37] Zeng M G, Feng Y P and Liang G C 2011 Nano Lett. 11 1369
[38] See http://quantumwise.com/, for ATOMISTIX TOOLKIT
[39] Buttiker M, Imry Y, Landauer R and Pinhas S 1985 Phys. Rev. B 31 6207
[40] Dan X, Yao K L, Gao G Y and Ma G Q 2013 Chin. Phys. B 22 047507
[41] Qiao Z J, Chen G D, Ye H G, Wu Y L, Niu H B and Zhu Y Z 2012 Chin. Phys. B 21 087101
[42] Pan H, Feng Y P, Wu Q Y and Huang Z G 2008 Phys. Rev. B 77 125211
[43] Xu H J and Li X J 2008 Appl. Phys. Lett. 93 172105
[44] Aparecido-Ferreeira A, Miyazaki H, Li S L, Komatsu K, Nakaharai S and Tsukaqoshi K 2012 Nanoscale 4 7842
[1] Cobalt anchored CN sheet boosts the performance of electrochemical CO oxidation
Xu Liu(刘旭), Jun-Chao Huang(黄俊超), and Xiang-Mei Duan(段香梅). Chin. Phys. B, 2021, 30(6): 067104.
[2] Effects of substitution of group-V atoms for carbon or silicon atoms on optical properties of silicon carbide nanotubes
Ying-Ying Yang(杨莹莹), Pei Gong(龚裴), Wan-Duo Ma(马婉铎), Rui Hao(郝锐), and Xiao-Yong Fang(房晓勇). Chin. Phys. B, 2021, 30(6): 067803.
[3] First-principles calculations of K-shell x-ray absorption spectra for warm dense ammonia
Zi Li(李孜), Wei-Jie Li(李伟节), Cong Wang(王聪), Dafang Li(李大芳), Wei Kang(康炜), Xian-Tu He(贺贤土), and Ping Zhang(张平). Chin. Phys. B, 2021, 30(5): 057102.
[4] High-pressure elastic anisotropy and superconductivity of hafnium: A first-principles calculation
Cheng-Bin Zhang(张成斌), Wei-Dong Li(李卫东), Ping Zhang(张平), and Bao-Tian Wang(王保田). Chin. Phys. B, 2021, 30(5): 056202.
[5] First-principles investigation of the valley and electrical properties of carbon-doped α-graphyne-like BN sheet
Bo Chen(陈波), Xiang-Qian Li(李向前), Lin Xue(薛林), Yan Han(韩燕), Zhi Yang(杨致), and Long-Long Zhang(张龙龙). Chin. Phys. B, 2021, 30(5): 057101.
[6] Two-dimensional PC3 as a promising anode material for potassium-ion batteries: First-principles calculations
Chun Zhou(周淳), Junchao Huang(黄俊超), and Xiangmei Duan(段香梅). Chin. Phys. B, 2021, 30(5): 056801.
[7] Ground-state structure and physical properties of YB 3 predicted from first-principles calculations
Bin-Hua Chu(初斌华), Yuan Zhao(赵元), and De-Hua Wang(王德华). Chin. Phys. B, 2021, 30(4): 046101.
[8] First-principles calculations of F-, Cl-, and N-related defects of amorphous SiO 2 and their impacts on carrier trapping and proton release
Xin Gao(高鑫), Yunliang Yue(乐云亮), Yang Liu(刘杨), and Xu Zuo(左旭). Chin. Phys. B, 2021, 30(4): 047104.
[9] Two-dimensional MnN utilized as high-capacity anode for Li-ion batteries
Junping Hu(胡军平), Zhangyin Wang(王章寅), Genrui Zhang(张根瑞), Yu Liu(刘宇), Ning Liu(刘宁), Wei Li(李未), Jianwen Li(李健文), Chuying Ouyang(欧阳楚英), and Shengyuan A. Yang(杨声远). Chin. Phys. B, 2021, 30(4): 046302.
[10] Passivation of PEA+ to MAPbI3 (110) surface states by first-principles calculations
Wei Hu(胡伟), Ying Tian(田颖), Hong-Tao Xue(薛红涛), Wen-Sheng Li(李文生), and Fu-Ling Tang(汤富领). Chin. Phys. B, 2021, 30(4): 047101.
[11] First-principles analysis of phonon thermal transport properties of two-dimensional WS2/WSe2 heterostructures
Zheng Chang(常征), Kunpeng Yuan(苑昆鹏), Zhehao Sun(孙哲浩), Xiaoliang Zhang(张晓亮), Yufei Gao(高宇飞), Xiaojing Gong(弓晓晶), and Dawei Tang(唐大伟). Chin. Phys. B, 2021, 30(3): 034401.
[12] Structural, mechanical, electronic properties, and Debye temperature of quaternary carbide Ti3NiAl2C ceramics under high pressure: A first-principles study
Diyou Jiang(姜迪友), Wenbo Xiao(肖文波), and Sanqiu Liu(刘三秋). Chin. Phys. B, 2021, 30(3): 036202.
[13] A first-principles study on zigzag phosphorene nanoribbons terminated by transition metal atoms
Shuai Yang(杨帅), Zhiyong Wang(王志勇), Xueqiong Dai(戴学琼), Jianrong Xiao(肖剑荣), and Mengqiu Long(龙孟秋). Chin. Phys. B, 2021, 30(2): 027305.
[14] First-principles study of the co-effect of carbon doping and oxygen vacancies in ZnO photocatalyst
Jia Shi(史佳), Lei Wang(王蕾), and Qiang Gu(顾强). Chin. Phys. B, 2021, 30(2): 026301.
[15] Novel structures and mechanical properties of Zr2N: Ab initio description under high pressures
Minru Wen(文敏儒), Xing Xie(谢兴), Zhixun Xie(谢植勋), Huafeng Dong(董华锋), Xin Zhang(张欣), Fugen Wu(吴福根), and Chong-Yu Wang(王崇愚). Chin. Phys. B, 2021, 30(1): 016403.
No Suggested Reading articles found!