Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(4): 046102    DOI: 10.1088/1674-1056/23/4/046102

The stress field and energy of screw dislocation in smectic A liquid crystals and the mistakes of the classical solution

Fan Tian-Youa, Li Xian-Fangb
a School of Physics, Beijing Institute of Technology, Beijing 100081, China;
b Department of Engineering Mechanics, Central South University, Changsha 410075, China
Abstract  The mistakes in the classical solution of a screw dislocation in smectic A liquid crystals are pointed out. A serious problem with the well-known theory is pointed, which may be named de Gennes-Kleman-Pershan paradox and has existed for many decades in the scientific community of liquid crystal study. The correct solution is given in this paper by a simplest, elementary, and straight forward method. In connection with this, the stress field and energy of dislocation are discussed in detail. The present article provides the correct stress field and dislocation energy as well.
Keywords:  liquid crystals      dislocation      exact solution  
Received:  22 July 2012      Revised:  11 November 2013      Published:  15 April 2014
PACS:  61.30.-v (Liquid crystals)  
  61.30.Dk (Continuum models and theories of liquid crystal structure)  
  61.30.Jf (Defects in liquid crystals)  
Corresponding Authors:  Fan Tian-You     E-mail:
About author:  61.30.-v; 61.30.Dk; 61.30.Jf

Cite this article: 

Fan Tian-You, Li Xian-Fang The stress field and energy of screw dislocation in smectic A liquid crystals and the mistakes of the classical solution 2014 Chin. Phys. B 23 046102

[1] de Gennes P G and Prost J 1993 The Physics of Liquid Crystals (London: Clarendon), pp. 1-580
[2] Kleman M 1974 J. Physique 35 595
[3] Kleman M and Oswald P 1982 J. Physique 43 655
[4] Oswald P and Pieranski P 2006 Smectic and Columnar Liquid Crystals (London: Taylor & Francis), p. 1-700
[5] Landau L D and Lifshitz E M 1986 Theory of Elasticity, 3rd edn. (Oxford: Pergamon), pp.174, 178
[6] Fujii S, Komura S, Ishii Y and Lu C Y D 2011 J. Phys.: Condens. Matter 23 235105
[7] Brostow W, Cunha A M, Quintanila J and Simoes R Macromol 2002 Theory Simul. 11 308
[8] Samulski E T 1985 Faraday Discuss. Chem. Soc. 79 7
[9] Brostow W 1990 Polymer 31 979
[10] Hess M 2000 High Performance Polymers, in Performance of Plastics, ed. Brostow W (Hanser: Munich-Cincinnati), Chap. 21, p. 519
[11] Pershan P S 1974 J. Appl. Phys. 45 1590
[12] Pleiner H 1986 Liquid Crystals 1 197
[13] Kralj S and Sluckin T J 1993 Phys. Rev. E 48 3244
[14] Kralj S and Sluckin T J 1995 Liquid Crystals 18 887
[15] Kleman M 1976 Phil. Mag. 34 79
[16] Pleiner H 1986 Phil. Mag. A 54 421
[17] Pleiner H 1988 Liquid Crystals 3 247
[18] Fan T Y 2010 Mathematical Theory of Elasticity of Quasicrystals and Its Applications (Beijing: Science Press/Heidelberg, Springer-Verlag), pp. 103-120
[19] Courant R and Hilbert D 1953 Methods of Mathematical Physics (New York: Interscience Publishers), Vol. II, p. 320
[20] Muskhelishvili N I 1956 Some Basic Problems of Mathematical Theory of Elasticity (Groningen: Noordhoff), pp. 66, 67
[21] Wang C D and Yang G C 1997 Chin. Phys. 6 422
[22] Li L Yu H and Zhang Z D 2001 Chin. Phys. 10 645
[23] Ye W T, Xing H Y, Yang G C and Yuan M Y 2009 Chin. Phys. B 18 238
[24] Chang C R, Zhang Z D and Ma D L 2009 Chin. Phys. B 18 1560
[25] Zhang R, Peng Z H, Liu Y G, Zheng Z G and Xuan L 2009 Chin. Phys. B 18 4380
[26] Luo K F, Jiang X L and Yang Y L 2008 Chin. Phys. B 17 2600
[1] Exact scattering states in one-dimensional Hermitian and non-Hermitian potentials
Ruo-Lin Chai(柴若霖), Qiong-Tao Xie(谢琼涛), Xiao-Liang Liu(刘小良). Chin. Phys. B, 2020, 29(9): 090301.
[2] Effects of Re, Ta, and W in [110] (001) dislocation core of γ/γ' interface to Ni-based superalloys: First-principles study
Chuanxi Zhu(朱传喜), Tao Yu(于涛). Chin. Phys. B, 2020, 29(9): 096101.
[3] Exact solution of the (1+2)-dimensional generalized Kemmer oscillator in the cosmic string background with the magnetic field
Yi Yang(杨毅), Shao-Hong Cai(蔡绍洪), Zheng-Wen Long(隆正文), Hao Chen(陈浩), Chao-Yun Long(龙超云). Chin. Phys. B, 2020, 29(7): 070302.
[4] Exact analytical results for a two-level quantum system under a Lorentzian-shaped pulse field
Qiong-Tao Xie(谢琼涛), Xiao-Liang Liu(刘小良). Chin. Phys. B, 2020, 29(6): 060305.
[5] Modification of the Peierls-Nabarro model for misfit dislocation
Shujun Zhang(张淑君), Shaofeng Wang(王少峰). Chin. Phys. B, 2020, 29(5): 056102.
[6] Unified approach to various quantum Rabi models witharbitrary parameters
Xiao-Fei Dong(董晓菲), You-Fei Xie(谢幼飞), Qing-Hu Chen(陈庆虎). Chin. Phys. B, 2020, 29(2): 020302.
[7] Non-equilibrium atomic simulation for Frenkel–Kontorova model with moving dislocation at finite temperature
Baiyili Liu(刘白伊郦) and Shaoqiang Tang(唐少强). Chin. Phys. B, 2020, 29(11): 110501.
[8] Nucleation and growth of helium bubble at (110) twist grain boundaries in tungsten studied by molecular dynamics
Fang-Biao Li(李芳镖), Guang Ran(冉广), Ning Gao(高宁), Shang-Quan Zhao(赵尚泉), Ning Li(李宁). Chin. Phys. B, 2019, 28(8): 085203.
[9] Polarized red, green, and blue light emitting diodes fabricated with identical device configuration using rubbed PEDOT:PSS as alignment layer
Haoran Zhang(张皓然), Qi Zhang(张琪), Qian Zhang(张茜), Huizhi Sun(孙汇智), Gang Hai(海港), Jing Tong(仝静), Haowen Xu(徐浩文), Ruidong Xia(夏瑞东). Chin. Phys. B, 2019, 28(7): 078108.
[10] Dislocation neutralizing in a self-organized array of dislocation and anti-dislocation
Feng-Lin Deng(邓凤麟), Xiang-Sheng Hu(胡湘生), Shao-Feng Wang(王少峰). Chin. Phys. B, 2019, 28(11): 116103.
[11] Properties of multi-Gaussian Schell-model beams carrying an edge dislocation propagating in oceanic turbulence
Da-Jun Liu(刘大军), Yao-Chuan Wang(王耀川), Gui-Qiu Wang(王桂秋), Hong-Ming Yin(尹鸿鸣), Hai-Yang Zhong(仲海洋). Chin. Phys. B, 2019, 28(10): 104207.
[12] The effect of dislocations on the thermodynamic properties of Ta single crystal under high pressure by molecular dynamics simulation
Yalin Li(李亚林), Jun Cai(蔡军), Dan Mo(莫丹), Yandong Wang(王沿东). Chin. Phys. B, 2018, 27(8): 086401.
[13] Interaction between many parallel screw dislocations and a semi-infinite crack in a magnetoelectroelastic solid
Xin Lv(吕鑫), Guan-Ting Liu(刘官厅). Chin. Phys. B, 2018, 27(7): 074601.
[14] Integrability classification and exact solutions to generalized variable-coefficient nonlinear evolution equation
Han-Ze Liu(刘汉泽), Li-Xiang Zhang(张丽香). Chin. Phys. B, 2018, 27(4): 040202.
[15] The global monopole spacetime and its topological charge
Hongwei Tan(谭鸿威), Jinbo Yang(杨锦波), Jingyi Zhang(张靖仪), Tangmei He(何唐梅). Chin. Phys. B, 2018, 27(3): 030401.
No Suggested Reading articles found!