Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(4): 044208    DOI: 10.1088/1674-1056/23/4/044208
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Exact solutions and linear stability analysis for two-dimensional Ablowitz–Ladik equation

Zhang Jin-Liang, Wang Hong-Xian
School of Mathematics and Statistics, Henan University of Science and Technology, Luoyang 471023, China
Abstract  The Ablowitz-Ladik equation is a very important model in nonlinear mathematical physics. In this paper, the hyperbolic function solitary wave solutions, the trigonometric function periodic wave solutions, and the rational wave solutions with more arbitrary parameters of two-dimensional Ablowitz-Ladik equation are derived by using the (G'/G)-expansion method, and the effects of the parameters (including the coupling constant and other parameters) on the linear stability of the exact solutions are analysed and numerically simulated.
Keywords:  two-dimensional Ablowitz-Ladik equation      linear stability      exact solution      numerical simulation  
Received:  28 May 2013      Revised:  14 July 2013      Accepted manuscript online: 
PACS:  42.81.Dp (Propagation, scattering, and losses; solitons)  
  42.65.Tg (Optical solitons; nonlinear guided waves)  
  02.30.Jr (Partial differential equations)  
  05.45.Yv (Solitons)  
Fund: Project supported by the Basic Science and the Front Technology Research Foundation of Henan Province, China (Grant Nos. 092300410179 and 122102210427), the Doctoral Scientific Research Foundation of Henan University of Science and Technology, China (Grant No. 09001204), the Scientific Research Innovation Ability Cultivation Foundation of Henan University of Science and Technology, China (Grant No. 011CX011), and the Scientific Research Foundation of Henan University of Science and Technology (Grant No. 2012QN011).
Corresponding Authors:  Zhang Jin-Liang     E-mail:  zhangjin6602@163.com
About author:  42.81.Dp; 42.65.Tg; 02.30.Jr; 05.45.Yv

Cite this article: 

Zhang Jin-Liang, Wang Hong-Xian Exact solutions and linear stability analysis for two-dimensional Ablowitz–Ladik equation 2014 Chin. Phys. B 23 044208

[1] Kevrekidis P G 2009 The Discrete Nonlinear Schrödinger Equation: Mathematical Analysis, Numerical Computations and Physical Perspectives (Berlin: Springer-Verlag) p. 3
[2] Kuznetsov E A, Rubenchik A M and Zakharov V E 1986 Phys. Rep. 142 103
[3] Ablowitz M J and Clarkson P A 1991 Solitons, Nonlinear Evolution Equations and Inverse Scattering (New York: Cambridge University Press) p. 200
[4] Gu C H 1990 Soliton Theory and Its Application (Hangzhou: Zhejiang Publishing House of Science and Technology) p. 160
[5] Miura M R 1978 Bäcklund Transformation (Berlin: Springer-Verlag) p. 185
[6] Hirota R 1971 Phys. Rev. Lett. 27 1192
[7] Hu X B and Tam H W 2000 Phys. Lett. A 276 65
[8] Sun M N, Deng S F and Chen D Y 2005 Chaos, Solitons and Fractals 23 1169
[9] Parkes E J and Duffy B R 1996 Comput. Phys. Commun. 98 288
[10] Wang M L 1995 Phys. Lett. A 199 169
[11] Wang M L, Zhou Y B and Li Z B 1996 Phys. Lett. A 216 67
[12] Zhang J L, Wang Y M, Wang M L and Fang Z D 2003 Chin. Phys. 12 245
[13] Dai C Q, Cen X and Wu S S 2008 Comput. Math. Appl. 56 55
[14] Soto-Crespo J M, Akhmediev N and Ankiewicz A 2003 Phys. Lett. A 314 126
[15] Chow KW, Conte R and Xu N 2006 Phys. Lett. A 349 422
[16] Malomed B and Weinstein M I 1996 Phys. Lett. A 220 91
[17] Malomed B A, Crasovan L C and Mihalache D 2002 Physica D 161 187
[18] Pelinovsky D E, Kevrekidis P G and Frantzeskakis D J 2005 Physica D 212 1
[19] Chong C and Pelinovsky D E 2011 Discrete and Continuous Dynamical Systems, Series S 4 1019
[20] Dai C Q and Zhang J F 2006 Opt. Commun. 263 309
[21] Huang W H and Liu Y L 2009 Chaos, Solitons and Fractals 40 786
[22] Maruno K, Ohta Y and Joshi N 2003 Phys. Lett. A 311 214
[23] Maruno K, Ankiewicz A and Akhmedievc N 2003 Opt. Commun. 221 199
[24] Maruno K, Ankiewicz A and Akhmedievc N 2005 Phys. Lett. A 347 231
[25] Aslan I 2011 Phys. Lett. A 375 4214
[26] Aslan I 2009 Appl. Math. Comput. 215 3140
[27] Kevrekidis P G, Herring G J, Lafortune S and Hoq Q E 2012 Phys. Lett. A 376 982
[28] Khare A, Rasmussen K O, Samuelsen M R and Saxena A 2005 J. Phys. A: Math. Gen. 38 807
[29] Khare A, Rasmussen K O, Samuelsen M R and Saxena A 2011 Phys. Scr. 84 065001
[30] Zhang J L and Liu Z G 2011 Commun. Theor. Phys. 56 1111
[31] Zhang J L, Liu Z G, Li S W and Wang M L 2012 Phys. Scr. 86 015401
[32] Wang M L, Li X Z and Zhang J L 2008 Phys. Lett. A 372 417
[33] Wang M L, Zhang J L and Li X Z 2008 Appl. Math. Comput. 206 321
[34] Guo S M and Zhou Y B 2010 Appl. Math. Comput. 215 3214
[1] Effect of pressure and space between electrodes on the deposition of SiNxHy films in a capacitively coupled plasma reactor
Meryem Grari, CifAllah Zoheir, Yasser Yousfi, and Abdelhak Benbrik. Chin. Phys. B, 2021, 30(5): 055205.
[2] Numerical simulation of super-continuum laser propagation in turbulent atmosphere
Ya-Qian Li(李雅倩), Wen-Yue Zhu (朱文越), and Xian-Mei Qian(钱仙妹). Chin. Phys. B, 2021, 30(3): 034201.
[3] Numerical research on effect of overlap ratio on thermal-stress behaviors of the high-speed laser cladding coating
Xiaoxi Qiao(乔小溪), Tongling Xia(夏同领), and Ping Chen(陈平). Chin. Phys. B, 2021, 30(1): 018104.
[4] Synchronization mechanism of clapping rhythms in mutual interacting individuals
Shi-Lan Su(苏世兰), Jing-Hua Xiao(肖井华), Wei-Qing Liu(刘维清), and Ye Wu(吴晔). Chin. Phys. B, 2021, 30(1): 010505.
[5] Optical properties of several ternary nanostructures
Xiao-Long Tang(唐小龙), Xin-Lu Cheng(程新路), Hua-Liang Cao(曹华亮), and Hua-Dong Zeng(曾华东). Chin. Phys. B, 2021, 30(1): 017803.
[6] Numerical simulation on ionic wind in circular channels
Gui-Wen Zhang(张桂文), Jue-Kuan Yang(杨决宽), and Xiao-Hui Lin(林晓辉). Chin. Phys. B, 2021, 30(1): 014701.
[7] Exact scattering states in one-dimensional Hermitian and non-Hermitian potentials
Ruo-Lin Chai(柴若霖), Qiong-Tao Xie(谢琼涛), Xiao-Liang Liu(刘小良). Chin. Phys. B, 2020, 29(9): 090301.
[8] A new car-following model with driver's anticipation effect of traffic interruption probability
Guang-Han Peng(彭光含). Chin. Phys. B, 2020, 29(8): 084501.
[9] Exact solution of the (1+2)-dimensional generalized Kemmer oscillator in the cosmic string background with the magnetic field
Yi Yang(杨毅), Shao-Hong Cai(蔡绍洪), Zheng-Wen Long(隆正文), Hao Chen(陈浩), Chao-Yun Long(龙超云). Chin. Phys. B, 2020, 29(7): 070302.
[10] Exact analytical results for a two-level quantum system under a Lorentzian-shaped pulse field
Qiong-Tao Xie(谢琼涛), Xiao-Liang Liu(刘小良). Chin. Phys. B, 2020, 29(6): 060305.
[11] Solid angle car following model
Dongfang Ma(马东方), Yueyi Han(韩月一), Sheng Jin(金盛). Chin. Phys. B, 2020, 29(6): 060504.
[12] Droplets breakup via a splitting microchannel
Wei Gao(高崴), Cheng Yu(于程), Feng Yao(姚峰). Chin. Phys. B, 2020, 29(5): 054702.
[13] Electron beam irradiation on novel coronavirus (COVID-19): A Monte-Carlo simulation
Guobao Feng(封国宝), Lu Liu(刘璐), Wanzhao Cui(崔万照), Fang Wang(王芳). Chin. Phys. B, 2020, 29(4): 048703.
[14] Interface coupling effects of weakly nonlinear Rayleigh-Taylor instability with double interfaces
Zhiyuan Li(李志远), Lifeng Wang(王立锋), Junfeng Wu(吴俊峰), Wenhua Ye(叶文华). Chin. Phys. B, 2020, 29(3): 034704.
[15] The second Hopf bifurcation in lid-driven square cavity
Tao Wang(王涛), Tiegang Liu(刘铁钢), Zheng Wang(王正). Chin. Phys. B, 2020, 29(3): 030503.
No Suggested Reading articles found!