Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(4): 044208    DOI: 10.1088/1674-1056/23/4/044208
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Exact solutions and linear stability analysis for two-dimensional Ablowitz–Ladik equation

Zhang Jin-Liang (张金良), Wang Hong-Xian (王红县)
School of Mathematics and Statistics, Henan University of Science and Technology, Luoyang 471023, China
Abstract  The Ablowitz-Ladik equation is a very important model in nonlinear mathematical physics. In this paper, the hyperbolic function solitary wave solutions, the trigonometric function periodic wave solutions, and the rational wave solutions with more arbitrary parameters of two-dimensional Ablowitz-Ladik equation are derived by using the (G'/G)-expansion method, and the effects of the parameters (including the coupling constant and other parameters) on the linear stability of the exact solutions are analysed and numerically simulated.
Keywords:  two-dimensional Ablowitz-Ladik equation      linear stability      exact solution      numerical simulation  
Received:  28 May 2013      Revised:  14 July 2013      Accepted manuscript online: 
PACS:  42.81.Dp (Propagation, scattering, and losses; solitons)  
  42.65.Tg (Optical solitons; nonlinear guided waves)  
  02.30.Jr (Partial differential equations)  
  05.45.Yv (Solitons)  
Fund: Project supported by the Basic Science and the Front Technology Research Foundation of Henan Province, China (Grant Nos. 092300410179 and 122102210427), the Doctoral Scientific Research Foundation of Henan University of Science and Technology, China (Grant No. 09001204), the Scientific Research Innovation Ability Cultivation Foundation of Henan University of Science and Technology, China (Grant No. 011CX011), and the Scientific Research Foundation of Henan University of Science and Technology (Grant No. 2012QN011).
Corresponding Authors:  Zhang Jin-Liang     E-mail:  zhangjin6602@163.com
About author:  42.81.Dp; 42.65.Tg; 02.30.Jr; 05.45.Yv

Cite this article: 

Zhang Jin-Liang (张金良), Wang Hong-Xian (王红县) Exact solutions and linear stability analysis for two-dimensional Ablowitz–Ladik equation 2014 Chin. Phys. B 23 044208

[1] Kevrekidis P G 2009 The Discrete Nonlinear Schrödinger Equation: Mathematical Analysis, Numerical Computations and Physical Perspectives (Berlin: Springer-Verlag) p. 3
[2] Kuznetsov E A, Rubenchik A M and Zakharov V E 1986 Phys. Rep. 142 103
[3] Ablowitz M J and Clarkson P A 1991 Solitons, Nonlinear Evolution Equations and Inverse Scattering (New York: Cambridge University Press) p. 200
[4] Gu C H 1990 Soliton Theory and Its Application (Hangzhou: Zhejiang Publishing House of Science and Technology) p. 160
[5] Miura M R 1978 Bäcklund Transformation (Berlin: Springer-Verlag) p. 185
[6] Hirota R 1971 Phys. Rev. Lett. 27 1192
[7] Hu X B and Tam H W 2000 Phys. Lett. A 276 65
[8] Sun M N, Deng S F and Chen D Y 2005 Chaos, Solitons and Fractals 23 1169
[9] Parkes E J and Duffy B R 1996 Comput. Phys. Commun. 98 288
[10] Wang M L 1995 Phys. Lett. A 199 169
[11] Wang M L, Zhou Y B and Li Z B 1996 Phys. Lett. A 216 67
[12] Zhang J L, Wang Y M, Wang M L and Fang Z D 2003 Chin. Phys. 12 245
[13] Dai C Q, Cen X and Wu S S 2008 Comput. Math. Appl. 56 55
[14] Soto-Crespo J M, Akhmediev N and Ankiewicz A 2003 Phys. Lett. A 314 126
[15] Chow KW, Conte R and Xu N 2006 Phys. Lett. A 349 422
[16] Malomed B and Weinstein M I 1996 Phys. Lett. A 220 91
[17] Malomed B A, Crasovan L C and Mihalache D 2002 Physica D 161 187
[18] Pelinovsky D E, Kevrekidis P G and Frantzeskakis D J 2005 Physica D 212 1
[19] Chong C and Pelinovsky D E 2011 Discrete and Continuous Dynamical Systems, Series S 4 1019
[20] Dai C Q and Zhang J F 2006 Opt. Commun. 263 309
[21] Huang W H and Liu Y L 2009 Chaos, Solitons and Fractals 40 786
[22] Maruno K, Ohta Y and Joshi N 2003 Phys. Lett. A 311 214
[23] Maruno K, Ankiewicz A and Akhmedievc N 2003 Opt. Commun. 221 199
[24] Maruno K, Ankiewicz A and Akhmedievc N 2005 Phys. Lett. A 347 231
[25] Aslan I 2011 Phys. Lett. A 375 4214
[26] Aslan I 2009 Appl. Math. Comput. 215 3140
[27] Kevrekidis P G, Herring G J, Lafortune S and Hoq Q E 2012 Phys. Lett. A 376 982
[28] Khare A, Rasmussen K O, Samuelsen M R and Saxena A 2005 J. Phys. A: Math. Gen. 38 807
[29] Khare A, Rasmussen K O, Samuelsen M R and Saxena A 2011 Phys. Scr. 84 065001
[30] Zhang J L and Liu Z G 2011 Commun. Theor. Phys. 56 1111
[31] Zhang J L, Liu Z G, Li S W and Wang M L 2012 Phys. Scr. 86 015401
[32] Wang M L, Li X Z and Zhang J L 2008 Phys. Lett. A 372 417
[33] Wang M L, Zhang J L and Li X Z 2008 Appl. Math. Comput. 206 321
[34] Guo S M and Zhou Y B 2010 Appl. Math. Comput. 215 3214
[1] Quantitative measurement of the charge carrier concentration using dielectric force microscopy
Junqi Lai(赖君奇), Bowen Chen(陈博文), Zhiwei Xing(邢志伟), Xuefei Li(李雪飞), Shulong Lu(陆书龙), Qi Chen(陈琪), and Liwei Chen(陈立桅). Chin. Phys. B, 2023, 32(3): 037202.
[2] Micro-mechanism study of the effect of Cd-free buffer layers ZnXO (X=Mg/Sn) on the performance of flexible Cu2ZnSn(S, Se)4 solar cell
Caixia Zhang(张彩霞), Yaling Li(李雅玲), Beibei Lin(林蓓蓓), Jianlong Tang(唐建龙), Quanzhen Sun(孙全震), Weihao Xie(谢暐昊), Hui Deng(邓辉), Qiao Zheng(郑巧), and Shuying Cheng(程树英). Chin. Phys. B, 2023, 32(2): 028801.
[3] Theoretical and experimental studies on high-power laser-induced thermal blooming effect in chamber with different gases
Xiangyizheng Wu(吴祥议政), Jian Xu(徐健), Keling Gong(龚柯菱), Chongfeng Shao(邵崇峰), Yang Kou(寇洋), Yuxuan Zhang(张宇轩), Yong Bo(薄勇), and Qinjun Peng(彭钦军). Chin. Phys. B, 2022, 31(8): 086105.
[4] Spatio-spectral dynamics of soliton pulsation with breathing behavior in the anomalous dispersion fiber laser
Ying Han(韩颖), Bo Gao(高博), Jiayu Huo(霍佳雨), Chunyang Ma(马春阳), Ge Wu(吴戈),Yingying Li(李莹莹), Bingkun Chen(陈炳焜), Yubin Guo(郭玉彬), and Lie Liu(刘列). Chin. Phys. B, 2022, 31(7): 074208.
[5] Data-driven parity-time-symmetric vector rogue wave solutions of multi-component nonlinear Schrödinger equation
Li-Jun Chang(常莉君), Yi-Fan Mo(莫一凡), Li-Ming Ling(凌黎明), and De-Lu Zeng(曾德炉). Chin. Phys. B, 2022, 31(6): 060201.
[6] Characteristics of secondary electron emission from few layer graphene on silicon (111) surface
Guo-Bao Feng(封国宝), Yun Li(李韵), Xiao-Jun Li(李小军), Gui-Bai Xie(谢贵柏), and Lu Liu(刘璐). Chin. Phys. B, 2022, 31(10): 107901.
[7] Exact solutions of non-Hermitian chains with asymmetric long-range hopping under specific boundary conditions
Cui-Xian Guo(郭翠仙) and Shu Chen(陈澍). Chin. Phys. B, 2022, 31(1): 010313.
[8] Effects of Prandtl number in two-dimensional turbulent convection
Jian-Chao He(何建超), Ming-Wei Fang(方明卫), Zhen-Yuan Gao(高振源), Shi-Di Huang(黄仕迪), and Yun Bao(包芸). Chin. Phys. B, 2021, 30(9): 094701.
[9] Evolution of melt convection in a liquid metal driven by a pulsed electric current
Yanyi Xu(徐燕祎), Yunhu Zhang(张云虎), Tianqing Zheng(郑天晴), Yongyong Gong(龚永勇), Changjiang Song(宋长江), Hongxing Zheng(郑红星), and Qijie Zhai(翟启杰). Chin. Phys. B, 2021, 30(8): 084701.
[10] Effect of pressure and space between electrodes on the deposition of SiNxHy films in a capacitively coupled plasma reactor
Meryem Grari, CifAllah Zoheir, Yasser Yousfi, and Abdelhak Benbrik. Chin. Phys. B, 2021, 30(5): 055205.
[11] Numerical simulation of super-continuum laser propagation in turbulent atmosphere
Ya-Qian Li(李雅倩), Wen-Yue Zhu (朱文越), and Xian-Mei Qian(钱仙妹). Chin. Phys. B, 2021, 30(3): 034201.
[12] Optical solitons supported by finite waveguide lattices with diffusive nonlocal nonlinearity
Changming Huang(黄长明), Hanying Deng(邓寒英), Liangwei Dong(董亮伟), Ce Shang(尚策), Bo Zhao(赵波), Qiangbo Suo(索强波), and Xiaofang Zhou(周小芳). Chin. Phys. B, 2021, 30(12): 124204.
[13] Asymmetric coherent rainbows induced by liquid convection
Tingting Shi(施婷婷), Xuan Qian(钱轩), Tianjiao Sun(孙天娇), Li Cheng(程力), Runjiang Dou(窦润江), Liyuan Liu(刘力源), and Yang Ji(姬扬). Chin. Phys. B, 2021, 30(12): 124208.
[14] Numerical simulation of chorus-driving acceleration of relativistic electrons at extremely low L-shell during geomagnetic storms
Zhen-Xia Zhang(张振霞), Ruo-Xian Zhou(周若贤), Man Hua(花漫), Xin-Qiao Li(李新乔), Bin-Bin Ni(倪彬彬), and Ju-Tao Yang(杨巨涛). Chin. Phys. B, 2021, 30(10): 109401.
[15] CO2 emission control in new CM car-following model with feedback control of the optimal estimation of velocity difference under V2X environment
Guang-Han Peng(彭光含), Rui Tang(汤瑞), Hua Kuang(邝华), Hui-Li Tan(谭惠丽), and Tao Chen(陈陶). Chin. Phys. B, 2021, 30(10): 108901.
No Suggested Reading articles found!