Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(4): 043101    DOI: 10.1088/1674-1056/23/4/043101
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

First-principles study on anatase TiO2 (101) surface adsorption of NO

Feng Qinga b, Yue Yuan-Xiaa b, Wang Wei-Huaa b, Zhu Hong-Qianga b
a College of Physics and Electronic Engineering, Chongqing Normal University, Chongqing 401331, China;
b Chongqing Key Laboratory on Optoelectronic Functional Materials, Chongqing 401331, China
Abstract  

In this paper, the stable structure and the electronic and optical properties of nitric oxide (NO) adsorption on the anatase TiO2 (101) surface are studied using the plane-wave ultrasoft pseudopotential method, which is based on the density functional theory. NO adsorption on the surface is weak when the outermost layer terminates on twofold coordinated oxygen atoms, but it is remarkably enhanced on the surface containing O vacancy defects. The higher the concentration of oxygen vacancy defects, the stronger the adsorption is. The adsorption energies are 3.4528 eV (N end adsorption), 2.6770 eV (O end adsorption), and 4.1437 eV (horizontal adsorption). The adsorption process is exothermic, resulting in a more stable adsorption structure. Furthermore, O vacancy defects on the TiO2 (101) surface significantly contribute to the absorption of visible light in a relatively low-energy region. A new absorption peak in the low-energy region, corresponding to an energy of 0.9 eV, is observed. However, the TiO2 (101) surface structure exhibits weak absorption in the low-energy region of visible light after NO adsorption.

Keywords:  anatase TiO2 (101) surface      first-principles      density functional theory      electronic structures  
Received:  03 July 2013      Revised:  26 August 2013      Accepted manuscript online: 
PACS:  31.15.A- (Ab initio calculations)  
  71.15.Dx (Computational methodology (Brillouin zone sampling, iterative diagonalization, pseudopotential construction))  
  71.15.Mb (Density functional theory, local density approximation, gradient and other corrections)  
  71.15.-m (Methods of electronic structure calculations)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 61106129 and 61274128).

Corresponding Authors:  Feng Qing     E-mail:  fengq_126@163.com
About author:  31.15.A-; 71.15.Dx; 71.15.Mb; 71.15.-m

Cite this article: 

Feng Qing, Yue Yuan-Xia, Wang Wei-Hua, Zhu Hong-Qiang First-principles study on anatase TiO2 (101) surface adsorption of NO 2014 Chin. Phys. B 23 043101

[1] Wang Y 2005 Acta Chim. Sin. 63 1023 (in Chinese)
[2] Wang Y and Meng L 2005 Acta Phys. Sin. 54 2207 (in Chinese)
[3] Wang Y and Liu X 2006 Journal of Lanzhou Jiaotong University (Natural Sciences) 25 47 (in Chinese)
[4] Ma X G, Tang C Q and Yang X H 2007 J. Theor. Comput. Chem. 6 23
[5] Ma X G 2006 Ph. D. Dissertation, "The Theoretical Study of the Anatase TiO2 Surface" (Wuhan: Huazhong University of Science and Technology) (in Chinese)
[6] Chen Q L, Tang C Q and Zheng G 2009 Physica B: Conden. Matter 404 1074
[7] Chen Q L and Tang C Q 2009 Acta Phys. Chim. Sin. 25 915
[8] Sun F Y and Shi H 2008 Forest Engin. 24 48
[9] Sumita M, Hu C P and Tateyama Y 2010 J. Phys. Chem. C 114 18529
[10] Finazzi E and Valentin C D 2007 J. Phys. Chem. C 111 9275
[11] Long R, English N J and Dai Y 2009 J. Phys. Chem. C 113 17464
[12] Wanbayor R, Deak P, Frauenheim T and Ruangpornvisuti V 2011 J. Chem. Phys. 134 104701
[13] Wanbayor R and Ruangpornvisuti V 2010 J. Mol. Structure: THEOCHEM 925 103
[14] Ma X G, Tang C Q, Huang J Q, Hu L F, Xue X and Zhou W B 2006 Acta Phys. Sin. 55 4208 (in Chinese)
[15] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758
[16] Perdew J P, Ruzsinszky A, Csonka G I, Vydrov O A, Scuseria G E, Constantin L A, Zhou X and Burke K 2008 Phys. Rev. Lett. 100 136406
[17] Yang Y, Feng Q, Wang W H and Wang Y 2013 J. Semicond. 34 073004
[18] Hebenstreit W, Ruzycki N, Herman G S, Gao Y F and Diebold U 2000 Phys. Rev. B 62 16334
[19] Ma X G, Jiang J J and Liang P 2008 Acta Phys. Sin. 57 3120 (in Chinese)
[20] Han Y, Liu C J and Ge Q F 2006 Phys. Chem. B 110 7463
[21] Hou Q Y, Zhang Y and Zhang T 2008 Acta Phys. Sin. 57 1862 (in Chinese)
[1] Effects of substitution of group-V atoms for carbon or silicon atoms on optical properties of silicon carbide nanotubes
Ying-Ying Yang(杨莹莹), Pei Gong(龚裴), Wan-Duo Ma(马婉铎), Rui Hao(郝锐), and Xiao-Yong Fang(房晓勇). Chin. Phys. B, 2021, 30(6): 067803.
[2] Cobalt anchored CN sheet boosts the performance of electrochemical CO oxidation
Xu Liu(刘旭), Jun-Chao Huang(黄俊超), and Xiang-Mei Duan(段香梅). Chin. Phys. B, 2021, 30(6): 067104.
[3] First-principles calculations of K-shell x-ray absorption spectra for warm dense ammonia
Zi Li(李孜), Wei-Jie Li(李伟节), Cong Wang(王聪), Dafang Li(李大芳), Wei Kang(康炜), Xian-Tu He(贺贤土), and Ping Zhang(张平). Chin. Phys. B, 2021, 30(5): 057102.
[4] High-pressure elastic anisotropy and superconductivity of hafnium: A first-principles calculation
Cheng-Bin Zhang(张成斌), Wei-Dong Li(李卫东), Ping Zhang(张平), and Bao-Tian Wang(王保田). Chin. Phys. B, 2021, 30(5): 056202.
[5] Investigation of electronic, elastic, and optical properties of topological electride Ca3Pb via first-principles calculations
Chang Sun(孙畅), Xin-Yu Cao(曹新宇), Xi-Hui Wang(王西惠), Xiao-Le Qiu(邱潇乐), Zheng-Hui Fang(方铮辉), Yu-Jie Yuan(袁宇杰), Kai Liu(刘凯), and Xiao Zhang(张晓). Chin. Phys. B, 2021, 30(5): 057104.
[6] First-principles investigation of the valley and electrical properties of carbon-doped α-graphyne-like BN sheet
Bo Chen(陈波), Xiang-Qian Li(李向前), Lin Xue(薛林), Yan Han(韩燕), Zhi Yang(杨致), and Long-Long Zhang(张龙龙). Chin. Phys. B, 2021, 30(5): 057101.
[7] Two-dimensional PC3 as a promising anode material for potassium-ion batteries: First-principles calculations
Chun Zhou(周淳), Junchao Huang(黄俊超), and Xiangmei Duan(段香梅). Chin. Phys. B, 2021, 30(5): 056801.
[8] NBN-doped nanographene embedded with five- and seven-membered rings on Au(111) surface
Huan Yang(杨欢), Yun Cao(曹云), Yixuan Gao(高艺璇), Yubin Fu(付钰彬), Li Huang(黄立), Junzhi Liu(刘俊治), Xinliang Feng(冯新亮), Shixuan Du(杜世萱), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2021, 30(5): 056802.
[9] Ground-state structure and physical properties of YB 3 predicted from first-principles calculations
Bin-Hua Chu(初斌华), Yuan Zhao(赵元), and De-Hua Wang(王德华). Chin. Phys. B, 2021, 30(4): 046101.
[10] Super-strong interactions between multivalent anions and graphene
Xing Liu(刘星) and Guosheng Shi(石国升). Chin. Phys. B, 2021, 30(4): 046801.
[11] First-principles calculations of F-, Cl-, and N-related defects of amorphous SiO 2 and their impacts on carrier trapping and proton release
Xin Gao(高鑫), Yunliang Yue(乐云亮), Yang Liu(刘杨), and Xu Zuo(左旭). Chin. Phys. B, 2021, 30(4): 047104.
[12] Two-dimensional MnN utilized as high-capacity anode for Li-ion batteries
Junping Hu(胡军平), Zhangyin Wang(王章寅), Genrui Zhang(张根瑞), Yu Liu(刘宇), Ning Liu(刘宁), Wei Li(李未), Jianwen Li(李健文), Chuying Ouyang(欧阳楚英), and Shengyuan A. Yang(杨声远). Chin. Phys. B, 2021, 30(4): 046302.
[13] Passivation of PEA+ to MAPbI3 (110) surface states by first-principles calculations
Wei Hu(胡伟), Ying Tian(田颖), Hong-Tao Xue(薛红涛), Wen-Sheng Li(李文生), and Fu-Ling Tang(汤富领). Chin. Phys. B, 2021, 30(4): 047101.
[14] Detailed structural, mechanical, and electronic study of five structures for CaF2 under high pressure
Ying Guo(郭颖), Yumeng Fang(方钰萌), and Jun Li(李俊). Chin. Phys. B, 2021, 30(3): 030502.
[15] First-principles analysis of phonon thermal transport properties of two-dimensional WS2/WSe2 heterostructures
Zheng Chang(常征), Kunpeng Yuan(苑昆鹏), Zhehao Sun(孙哲浩), Xiaoliang Zhang(张晓亮), Yufei Gao(高宇飞), Xiaojing Gong(弓晓晶), and Dawei Tang(唐大伟). Chin. Phys. B, 2021, 30(3): 034401.
No Suggested Reading articles found!