Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(9): 096801    DOI: 10.1088/1674-1056/22/9/096801
RAPID COMMUNICATION Prev   Next  

Interaction and local magnetic moments of metal phthalocyanine and tetraphenylporphyrin molecules on noble metal surfaces

Song Bo-Qun (宋博群), Pan Li-Da (潘理达), Du Shi-Xuan (杜世萱), Gao Hong-Jun (高鸿钧)
Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
Abstract  In order to understand the Kondo effect observed in molecular systems, first-principles calculations have been widely used to predict the ground state properties of molecules on metal substrates. In this work, the interaction and the local magnetic moments of magnetic molecules (3d-metal phthalocyanine and tetraphenylporphyrin molecules) on noble metal surfaces are investigated based on the density functional theory. The calculation results show that the dz2 orbital of the transition metal atom of the molecule plays a dominant role in the molecule-surface interaction and the adsorption energy exhibits a simple declining trend as the adsorption distance increases. In addition, the Au(111) surface generally has a weak interaction with the adsorbed molecule compared with the Cu(111) surface and thus serves as a better candidate substrate for studying the Kondo effect. The relation between the local magnetic moment and the Coulomb interaction U is examined by carrying out the GGA+U calculation according to Dudarev’s scheme. We find that the Coulomb interaction is essential for estimating the local magnetic moment in molecule-surface systems, and we suggest that the reference values of parameter U are 2 eV for Fe and 2-3 eV for Co.
Keywords:  magnetic molecule      local magnetic moment      Kondo effect  
Received:  19 May 2013      Revised:  21 May 2013      Accepted manuscript online: 
PACS:  68.43.Fg (Adsorbate structure (binding sites, geometry))  
  68.35.Dv (Composition, segregation; defects and impurities)  
  68.37.Ef (Scanning tunneling microscopy (including chemistry induced with STM))  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 51210003) and the National Basic Research Program of China (Grant Nos. 2011CB921702 and 2011CB808401).
Corresponding Authors:  Gao Hong-Jun     E-mail:  hjgao@iphy.ac.cn

Cite this article: 

Song Bo-Qun (宋博群), Pan Li-Da (潘理达), Du Shi-Xuan (杜世萱), Gao Hong-Jun (高鸿钧) Interaction and local magnetic moments of metal phthalocyanine and tetraphenylporphyrin molecules on noble metal surfaces 2013 Chin. Phys. B 22 096801

[1] Stróżecka A, Soriano M, Pascual J I and Palacios J J 2012 Phys. Rev. Lett. 109 147202
[2] Minamitani E, Tsukahara N, Matsunaka D, Kim Y, Takagi N and Kawai M 2012 Phys. Rev. Lett. 109 086602
[3] Tsukahara N, Shiraki S, Itou S, Ohta N, Takagi N and Kawai M 2011 Phys. Rev. Lett. 106 187201
[4] Kim H, Son W J, Jang W J, Yoon J K, Han S and Kahng S J 2009 Phys. Rev. B 80 245402
[5] Gao L, Ji W, Hu Y B, Cheng Z H, Deng Z T, Liu Q, Jiang N, Lin X, Guo W, Du S X, Hofer W A, Xie X C and Gao H J 2007 Phys. Rev. Lett. 99 106402
[6] Fu Y S, Ji S H, Chen X, Ma X C, Wu R, Wang C C, Duan W H, Qiu X H, Sun B, Zhang P, Jia J F and Xue Q K 2007 Phys. Rev. Lett. 99 256601
[7] Zhao A D, Li Q X, Chen L, Xiang H J, Wang W H, Pan S, Wang B, Xiao X D, Yang J L, Hou J G and Zhu Q S 2005 Science 309 1542
[8] Wahl P, Diekhöner L, Wittich G, Vitali L, Schneider M A and Kern K 2005 Phys. Rev. Lett. 95 166601
[9] Sun J T, Pan L D, Hu H, Du S X and Gao H J 2010 Chin. Phys. B 19 097809
[10] Zhang Y Y, Du S X and Gao H J 2012 Chin. Phys. B 21 036801
[11] Fano U 1961 Phys. Rev. 124 1866
[12] Ternes M, Heinrich A J and Schneider W D 2009 J. Phys.: Condens. Matter 21 053001
[13] Fernández-Torrente I, Franke K J and Pascual J I 2008 Phys. Rev. Lett. 101 217203
[14] Anderson P W 1961 Phys. Rev. 124 41
[15] Daybell M 1973 Magnetism (Rado and Suhl H, ed.) (New York: Academic Press) Vol. 5 pp. 122-147
[16] Zhang Y Y, Du S X and Gao H J 2011 Phys. Rev. B 84 125446
[17] Néel N, Kröger J, Limot L, Palotas K, Hofer W A and Berndt R 2007 Phys. Rev. Lett. 98 016801
[18] Perdew J P, Chevary J A, Vosko S H, Jackson K A, Pederson M R, Singh D J and Fiolhais C 1993 Phys. Rev. B 48 4978
[19] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758
[20] Dudarev S L, Botton G A, Savrasov S Y, Humphreys C J and Sutton A P 1998 Phys. Rev. B 57 1505
[21] Antonides E 1977 Phys. Rev. B 15 1669
[22] de Boer D K G 1984 J. Phys. F: Met. Phys. 14 2769
[23] Yin L I 1977 Phys. Rev. B 15 2974
[1] Uniaxial stress effect on quasi-one-dimensional Kondo lattice CeCo2Ga8
Kangqiao Cheng(程康桥), Binjie Zhou(周斌杰), Cuixiang Wang(王翠香), Shuo Zou(邹烁), Yupeng Pan(潘宇鹏), Xiaobo He(何晓波), Jian Zhang(张健), Fangjun Lu(卢方君), Le Wang(王乐), Youguo Shi(石友国), and Yongkang Luo(罗永康). Chin. Phys. B, 2022, 31(6): 067104.
[2] Chiral splitting of Kondo peak in triangular triple quantum dot
Yi-Ming Liu(刘一铭), Yuan-Dong Wang(王援东), and Jian-Hua Wei(魏建华). Chin. Phys. B, 2022, 31(5): 057201.
[3] Kondo screening cloud in a superconductor with mixed s-wave and p-wave pairing states
Zhen-Zhen Huang(黄真真), Xiong-Tao Peng(彭雄涛), Wan-Sheng Wang(王万胜), and Jin-Hua Sun(孙金华). Chin. Phys. B, 2022, 31(10): 107101.
[4] Capacitive coupling induced Kondo-Fano interference in side-coupled double quantum dots
Fu-Li Sun(孙复莉), Yuan-Dong Wang(王援东), Jian-Hua Wei(魏建华), Yi-Jing Yan(严以京). Chin. Phys. B, 2020, 29(6): 067204.
[5] Phase diagram characterized by transmission in a triangular quantum dot
Jin Huang(黄金), Wei-Zhong Wang(王为忠). Chin. Phys. B, 2018, 27(11): 117303.
[6] Voltage-controlled Kosterlitz-Thouless transitions and various kinds of Kondo behaviors in a triple dot device
Yong-Chen Xiong(熊永臣), Jun Zhang(张俊), Wang-Huai Zhou(周望怀), Amel Laref. Chin. Phys. B, 2017, 26(9): 097102.
[7] Interplay of superconductivity and d-f correlation in CeFeAs1-xPxO1-yFy
Luo Yong-Kang (罗永康), Li Yu-Ke (李玉科), Wang Cao (王操), Lin Xiao (林效), Dai Jian-Hui (戴建辉), Cao Guang-Han (曹光旱), Xu Zhu-An (许祝安). Chin. Phys. B, 2013, 22(8): 087415.
[8] Transport through artificial single-molecule magnets: Spin-pair state sequential tunneling and Kondo effects
Niu Peng-Bin (牛鹏斌), Wang Qiang (王强), Nie Yi-Hang (聂一行). Chin. Phys. B, 2013, 22(2): 027307.
[9] Transition from the Kondo effect to a Coulomb blockade in an electron shuttle
Zhang Rong (张荣), Chu Wei-Dong (楚卫东), Duan Su-Qing (段素青), Yang Ning (杨宁). Chin. Phys. B, 2013, 22(11): 117305.
[10] Spin-dependent transport through an interacting quantum dot system
Huang Rui (黄睿), Wu Shao-Quan (吴绍全), Yan Cong-Hua (闫从华). Chin. Phys. B, 2010, 19(7): 077302.
[11] Kondo transport through a quantum dot coupled with side quantum-dot structures
Jiang Zhao-Tan(江兆潭). Chin. Phys. B, 2010, 19(7): 077307.
[12] Magnetotransport through an Aharonov-Bohm ring with parallel double quantum dots coupled to ferromagnetic leads
Wu Shao-Quan(吴绍全), Hou Tao(侯涛), Zhao Guo-Ping(赵国平), and Yu Wan-Lun(余万伦). Chin. Phys. B, 2010, 19(4): 047202.
[13] Fano--Kondo effect in the T-shaped double quantum dots coupled to ferromagnetic leads
Hou Tao(侯涛), Wu Shao-Quan(吴绍全), Bi Ai-Hua(毕爱华), Yang Fu-Bin(羊富彬), Chen Jia-Feng(陈嘉峰), and Fan Meng(樊梦). Chin. Phys. B, 2009, 18(2): 783-789.
[14] Kondo effect in a deformed molecule coupled asymmetrically to ferromagnetic electrodes
Wang Rui-Qiang(王瑞强) and Jiang Kai-Ming(蒋开明) . Chin. Phys. B, 2009, 18(12): 5443-5450.
[15] Spin-polarized transport through the T-shaped double quantum dots
Yang Fu-Bin(羊富彬), Wu Shao-Quan(吴绍全), Yan Cong-Hua(闫从华),Huang Rui(黄睿), Hou Tao(侯涛), and Bi Ai-Hua(毕爱华) . Chin. Phys. B, 2008, 17(4): 1383-1388.
No Suggested Reading articles found!