Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(9): 096702    DOI: 10.1088/1674-1056/22/9/096702
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Extended Bose–Hubbard model with pair hopping on triangular lattice

Wang Yan-Cheng (王艳成)a, Zhang Wan-Zhou (张万舟)b, Shao Hui (邵慧)a, Guo Wen-An (郭文安)a
a Physics Department, Beijing Normal University, Beijing 100875, China;
b College of Physics and Optoelectronics, Taiyuan University of Technology, Taiyuan 030024, China
Abstract  We study systematically an extended Bose-Hubbard model on the triangular lattice by means of a meanfield method based on the Gutzwiller ansatz. Pair hopping terms are explicitly included and a three-body constraint is applied. The zero-temperature phase diagram and a variety of quantum phase transitions are investigated in great detail. In particular, we show the existence and the stability of the pair supersolid phase.
Keywords:  extended Bose-Hubbard model      pair hopping      zero-temperature phase diagram      pair supersolid  
Received:  07 April 2013      Revised:  22 April 2013      Accepted manuscript online: 
PACS:  67.85.Hj (Bose-Einstein condensates in optical potentials)  
  03.75.-b  
  67.80.kb (Supersolid phases on lattices)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11175018 and 11247251).
Corresponding Authors:  Guo Wen-An     E-mail:  waguo@bnu.edu.cn

Cite this article: 

Wang Yan-Cheng (王艳成), Zhang Wan-Zhou (张万舟), Shao Hui (邵慧), Guo Wen-An (郭文安) Extended Bose–Hubbard model with pair hopping on triangular lattice 2013 Chin. Phys. B 22 096702

[1] Lewenstein M, Sanpera A, Ahufinger V, Damski B, Sen(De) A and Sen U 2007 Adv. Phys. 56 243
[2] Bloch I, Dalibard J and Zwerger W 2008 Rev. Mod. Phys. 80 885
[3] Greiner M, Mandel O, Esslinger T, Hänsch T W and Bloch I 2002 Nature 415 39
[4] Diehl S, Baranov M, Daley A J and Zoller P 2010 Phys. Rev. Lett. 104 165301
[5] Diehl S, Baranov M, Daley A J and Zoller P 2010 Phys. Rev. B 82 064509
[6] Diehl S, Baranov M, Daley A J and Zoller P 2010 Phys. Rev. B 82 064510
[7] Daley A J, Taylor J M, Diehl S, Baranov M and Zoller P 2009 Phys. Rev. Lett. 102 040402
[8] Roncaglia M, Rizzi M and Cirac J I 2010 Phys. Rev. Lett. 104 096803
[9] Mazza L, Rizzi M, Lewenstein M and Cirac J I 2010 Phys. Rev. A 82 043629
[10] Lee Y W and Yang M F 2010 Phys. Rev. A 81 061604
[11] Ng K K and Yang M F 2011 Phys. Rev. B 83 100511
[12] Bonnes L and Wessel S 2011 Phys. Rev. Lett. 106 185302
[13] Chen Y C, Ng K K and Yang M F 2011 Phys. Rev. B 84 092503
[14] Bonnes L and Wessel S 2012 Phys. Rev. B 85 094513
[15] Sengupta P, Pryadko L P, Alet F, Troyer M and Schmid G 2005 Phys. Rev. Lett. 94 207202
[16] Batrouni G G and Scalettar R T 2000 Phys. Rev. Lett. 84 1599
[17] Schmidt K P, Dorier J, Läuchli A and Mila F 2006 Phys. Rev. B 74 174508
[18] Jiang H C, Fu L and Xu C K 2012 Phys. Rev. B 86 045129
[19] Trefzger C, Menotti C and Lewenstein M 2009 Phys. Rev. Lett. 103 035304
[20] Wessel S and Troyer M 2005 Phys. Rev. Lett. 95 127205
[21] Boninsegni M and Prokof’ev N 2005 Phys. Rev. Lett. 95 237204
[22] Melko R G, Paramekanti A, Burkov A A, Vishwanath A, Sheng D N and Balents L 2005 Phys. Rev. Lett. 95 127207
[23] Heidarian D and Damle K 2005 Phys. Rev. Lett. 95 127206
[24] Yang S J 2009 Commun. Theor. Phys. 52 611
[25] Zhou X F, Zhang Y S and Guo G C 2009 Phys. Rev. A 80 013605
[26] Yang S J and Feng S P 2010 New J. Phys. 12 023032
[27] Guo H L, Yin X G and Chen S 2011 J. Phys. B 44 195002
[28] Wang Y M and Liang J Q 2012 Chin. Phys. B 21 060305
[29] Sowiński T, Dutta O, Hauke P, Tagliacozzo L and Lewenstein M 2012 Phys. Rev. Lett. 108 115301
[30] Eckholt M and García-Ripoll J J 2008 Phys. Rev. A 77 063603
[31] Eckholt M and García-Ripoll J J 2009 New J. Phys. 11 093028
[32] Sheshadri K, Krishnamurthy H R, Pandit R and Ramakrishnan T V 1993 Europhys. Lett. 22 257
[33] Jaksch D, Bruder C, Cirac J I, Gardiner C W and Zoller P 1998 Phys. Rev. Lett. 81 3108
[34] Iskin M 2011 Phys. Rev. A 83 051606
[35] Lu X C and Yu Y 2006 Phys. Rev. A 74 063615
[36] Pai R V, Kurdestany J M, Sheshadri K and Pandit R 2012 Phys. Rev. B 85 214524
[37] Coleman S and Weinberg E 1973 Phys. Rev. D 7 1888
[38] Murthy G, Arovas D and Auerbach A 1997 Phys. Rev. B 55 3104
[39] Bonnes L and Wessel S 2011 Phys. Rev. B 84 054510
[40] Yamamoto D, Danshita I and Sá de Melo C A R 2012 Phys. Rev. A 85 021601
[41] Zhang W Z, Wang Y C and Guo W A 2012 arXiv: 1208.6506
[42] Becker C, Soltan-Panahi P, Kronjäger J, Dörscher S, Bongs K and Sengstock K 2010 New J. Phys. 12 065025
[1] Entanglement and thermalization in the extended Bose-Hubbard model after a quantum quench: A correlation analysis
Xiao-Qiang Su(苏晓强), Zong-Ju Xu(许宗菊), and You-Quan Zhao(赵有权). Chin. Phys. B, 2023, 32(2): 020506.
[2] Phase diagram of interacting fermionic two-leg ladder with pair hopping
Wan-Li Liu(刘万里), Tian-Zhong Yuan(原天忠), Zhi Lin(林志), Wei Yan(闫伟). Chin. Phys. B, 2019, 28(2): 020303.
No Suggested Reading articles found!