Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(9): 090301    DOI: 10.1088/1674-1056/22/9/090301
GENERAL Prev   Next  

Pseudoscalar Cornell potential for a spin-1/2 particle under spin and pseudospin symmetries in 1+1 dimension

M. Hamzavi, A. A. Rajabi
Physics Department, Shahrood University of Technology, Shahrood, Iran
Abstract  The Cornell potential that consists of Coulomb and linear potentials has received a great deal of attention in particle physics. In this paper, we present the exact solutions of the Dirac equation with the pseudoscalar Cornell potential under spin and pseudospin symmetry limits. The energy eigenvalues and corresponding eigenfunctions are given in closed form.
Keywords:  Dirac equation      pseudoscalar Cornell potential      spin and pseudospin symmetry  
Received:  08 November 2012      Revised:  24 February 2013      Published:  26 July 2013
PACS:  03.65.-w (Quantum mechanics)  
  03.65.Fd (Algebraic methods)  
  02.30.Gp (Special functions)  
Corresponding Authors:  M. Hamzavi     E-mail:  majid.hamzavi@gmail.com

Cite this article: 

M. Hamzavi, A. A. Rajabi Pseudoscalar Cornell potential for a spin-1/2 particle under spin and pseudospin symmetries in 1+1 dimension 2013 Chin. Phys. B 22 090301

[1] Ginocchio J N 2005 Phys. Rep. 414 165
[2] Bohr A, Hamamoto I and Mottelson B R 1982 Phys. Scr. 26 267
[3] Dudek J, Nazarewicz W, Szymanski Z and Leander G A 1987 Phys. Rev. Lett. 59 1405
[4] Troltenier D, Bahri C and Draayer J P 1995 Nucl. Phys. A 586 53
[5] Page P R, Goldman T and Ginocchio J N 2001 Phys. Rev. Lett. 86 204
[6] Hecht K T and Adler A 1969 Nucl. Phys. A 137 129
[7] Arima A, Harvey M and Shimizu K 1969 5 30 517
[8] Ginocchio J N, Leviatan A, Meng J and Zhou S G 2004 Phys. Rev. C 69 034303
[9] Ginocchio J N 1997 Phys. Rev. Lett. 78 436
[10] Quigg C and Rosner J L 1979 Phys. Rep. 56 167
[11] Chaichian M and Kokerler R 1980 Ann. Phys. 124 61
[12] Bykov A A, Dremin I M and Leonidov A V 1984 Sov. Phys. Usp. 27 321
[13] Plante G and Antippa A F 2005 J. Math. Phys. 46 062108
[14] Stack J D 1984 Phys. Rev. D 29 1213
[15] Bali G S, Schilling K and Wachter A 1997 Phys. Rev. D 56 2566
[16] Bessis D, Vrscay E R and Handy C R 1987 J. Phys. A: Math. Gen. 20 419
[17] Ghalenovi Z, Rajabi A A and Hamzavi M 2011 Acta Phys. Pol. B 42 1849
[18] Castro L B, de Castro A S and Hott M 2007 Int. J. Mod. Phys. E 16 3002
[19] Castro L B, de Castro A S and Hott M 2007 Europhys. Lett. 77 20009
[20] Alhaidari A D 2011 Phys. Lett. B 699 309
[21] Alhaidari A D 2010 Int. J. Mod. Phys. A 25 3703
[22] Alhaidari A D 2010 Found. Phys. 40 1088
[23] Zhou S G, Meng J and Ring P 2003 Phys. Rev. Lett. 91 262501
[24] He X T, Zhou S G, Meng J, Zhao E G and Scheid W 2006 Eur. Phys. J. A 28 265
[25] Song C Y, Yao J M and Meng J 2009 Chin. Phys. Lett. 26 122102
[26] Song C Y and Yao J M 2010 Chin. Phys. C 34 1425
[27] Nikiforov A F and Uvarov V B 1988 Special Functions of Mathematical Physics (Berlin: Birkhausr)
[28] Hamzavi M, Rajabi A A and Hassanabadi H 2011 Int. J. Mod. Phys. A 26 1363
[29] Hamzavi M, Hassanabadi H and Rajabi A A 2010 Mod. Phys. Lett. A 25 2447
[30] Hamzavi M, Hassanabadi H and Rajabi A A 2010 Int. J. Mod. Phys. E 19 2189
[31] Aydoğdu O and Sever R 2009 Phys. Scr. 80 015001
[32] Ginocchio J N 1999 Phys. Rep. 315 231
[33] Ginocchio J N 1999 Nucl. Phys. A 654 663
[34] Meng J, Sugawara-Tanabe K, Yamaji S and Arima A 1999 Phys. Rev. C 59 154
[35] Meng J, Sugawara-Tanabe K, Yamaji S, Ring P and Arima A 1998 Phys. Rev. C 58 R628
[1] Solution of Dirac equation for Eckart potential and trigonometric Manning Rosen potential using asymptotic iteration method
Resita Arum Sari, A Suparmi, C Cari. Chin. Phys. B, 2016, 25(1): 010301.
[2] Approximate analytical solution of the Dirac equation with q-deformed hyperbolic Pöschl-Teller potential and trigonometric Scarf Ⅱ non-central potential
Ade Kurniawan, A. Suparmi, C. Cari. Chin. Phys. B, 2015, 24(3): 030302.
[3] Unsuitable use of spin and pseudospin symmetries with a pseudoscalar Cornell potential
L. B. Castro, A. S. de Castro. Chin. Phys. B, 2014, 23(9): 090301.
[4] Solution of Dirac equation around a charged rotating black hole
Lü Yan, Hua Wei. Chin. Phys. B, 2014, 23(4): 040403.
[5] Bound state solutions of the Dirac equation with the Deng–Fan potential including a Coulomb tensor interaction
S. Ortakaya, H. Hassanabadi, B. H. Yazarloo. Chin. Phys. B, 2014, 23(3): 030306.
[6] Relativistic effect of pseudospin symmetry and tensor coupling on the Mie-type potential via Laplace transformation method
M. Eshghi, S. M. Ikhdair. Chin. Phys. B, 2014, 23(12): 120304.
[7] Spin and pseudospin symmetric Dirac particles in the field of Tietz–Hua potential including Coulomb tensor interaction
Sameer M. Ikhdair, Majid Hamzavi. Chin. Phys. B, 2013, 22(9): 090305.
[8] Relativistic symmetries in the Hulthén scalar–vector–tensor interactions
Majid Hamzavi, Ali Akbar Rajabi. Chin. Phys. B, 2013, 22(8): 080302.
[9] Relativistic symmetries with the trigonometric Pöschl-Teller potential plus Coulomb-like tensor interaction
Babatunde J. Falaye, Sameer M. Ikhdair. Chin. Phys. B, 2013, 22(6): 060305.
[10] Relativistic symmetries in Rosen–Morse potential and tensor interaction using the Nikiforov–Uvarov method
Sameer M Ikhdair, Majid Hamzavi. Chin. Phys. B, 2013, 22(4): 040302.
[11] Exact solutions of Dirac equation with Pöschl–Teller double-ring-shaped Coulomb potential via Nikiforov–Uvarov method
E. Maghsoodi, H. Hassanabadi, S. Zarrinkamar. Chin. Phys. B, 2013, 22(3): 030302.
[12] Relativistic symmetry of position-dependent mass particle in Coulomb field including tensor interaction
M. Eshghi, M. Hamzavi, S. M. Ikhdair. Chin. Phys. B, 2013, 22(3): 030303.
[13] Spin and pseudospin symmetries of the Dirac equation with shifted Hulthén potential using supersymmetric quantum mechanics
Akpan N. Ikot, Elham Maghsoodi, Eno J. Ibanga, Saber Zarrinkamar, Hassan Hassanabadi. Chin. Phys. B, 2013, 22(12): 120302.
[14] Eigen-spectra in the Dirac-attractive radial problem plus a tensor interaction under pseudospin and spin symmetry with the SUSY approach
S. Arbabi Moghadam, H. Mehraban, M. Eshghi. Chin. Phys. B, 2013, 22(10): 100305.
[15] Bound states of the Dirac equation with position-dependent mass for the Eckart potential
Bahar M. K., Yasuk F.. Chin. Phys. B, 2013, 22(1): 010301.
No Suggested Reading articles found!