Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(9): 090206    DOI: 10.1088/1674-1056/22/9/090206
GENERAL Prev   Next  

Ultra-elongated depth of focus of plasmonic lenses with concentric elliptical slits under Gaussian beam illumination

Wang Jing (王婧), Fu Yong-Qi (付永启)
School of Physical Electronics, University of Electronic Science and Technology of China, Chengdu 610054, China
Abstract  In this paper, we discuss the influence of ratio of minor to major axis on the propagation property and focusing performance of a plasmonic lens with variant periodic concentric elliptical slits illuminating under a Gaussian beam. In order to analyse the influence theoretically, a finite-difference time-domain (FDTD) numerical algorithm is adopted for the computational numerical calculation and the design of the plasmonic structure. The structure is flanked with penetrated slits through a 200-nm metal film (Au) which is coated on a quartz substrate. Tunability of focusing capability of the plasmonic lenses is studied by tailoring the ratio. Our calculation results demonstrate that the ratio of the elliptical slits greatly affects the focusing capability of the lense. The plasmonic lenses with concentric elliptical slits illuminating under a Gaussian beam have ultra-elongated depth of focus. These results are very encouraging for the future study of the plasmonic lens-based applications.
Keywords:  ultra-elongated depth of focus      plasmonic lenses      elliptical slits      finite-difference time-domain  
Received:  27 December 2012      Revised:  24 February 2013      Accepted manuscript online: 
PACS:  02.70.-c (Computational techniques; simulations)  
  41.20.Jb (Electromagnetic wave propagation; radiowave propagation)  
  42.30.-d (Imaging and optical processing)  
  42.79.Bh (Lenses, prisms and mirrors)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11079014 and 61077010).
Corresponding Authors:  Fu Yong-Qi     E-mail:  yqfu@uestc.edu.cn

Cite this article: 

Wang Jing (王婧), Fu Yong-Qi (付永启) Ultra-elongated depth of focus of plasmonic lenses with concentric elliptical slits under Gaussian beam illumination 2013 Chin. Phys. B 22 090206

[1] Barnes W L, Dereux A and Ebbesen T W 2003 Nature 424 824
[2] Martin-Moreno L, Garcia-Vidal F J, Lezec H J, Pellerin K M, Thio T, Pendry J B and Ebbesen T W 2001 Phys. Rev. Lett 86 1114
[3] Levy U, Abashin M, Ikeda K, Krishnamoorthy A, Cunningham J and Fainman Y 2007 Phys. Rev. Lett. 98 243901
[4] Ebbesen T W, Lezec H J, Ghaemi H F, Thio T and Wolff P A 1988 Nature 391 667
[5] Fu Y Q, Zhou W and Lim L E N 2008 J. Opt. Soc. Am. A 25 238
[6] Fu Y Q, Zhou X L and Zhao W 2009 J. Comput. Theor. Nano 6 617
[7] Liang G F, Zhao Q, Chen X, Wang C T, Zhao Z Y and Luo X G 2012 Acta Phys. Sin. 61 104203 (in Chinese)
[8] Zhong R B, Liu W H, Zhou J and Liu S G 2012 Chin. Phys. B 21 117303
[9] Ya F Y, Zhou W J, Liu A J, Chen W, Wang Y F, Yan X Y and Zheng W H 2011 Chin. Phys. B 20 087301
[10] Lee H, Xiong Y, Fang N, Srituravanich W, Durant S, Ambati M, Sun C and Zhang X 2005 New J. Phys. 7 255
[11] Shankaran D R, Gobi K V and Miura N 2007 Sens. Actuators B 121 158
[12] Pumera M, Sánchez S, Ichinose I and Tang J 2007 Sens. Actuators B 123 1195
[13] Descrovi E, Vaccaro L, Nakagawa W, Aeschimann L, Staufer U and Herzig H P 2004 Appl. Phys. Lett. 85 5340
[14] Fu Y Q, Zhou W, Lim L E N, Du C L and Luo X G 2007 Appl. Phys. Lett. 91 061124
[15] Lerman G M, Yanai A and Levy U 2009 Nano Lett. 9 2139
[16] Shi H F, Wang C T, Du C L, Luo X G, Dong X C and Gao H T 2006 Opt. Express 13 6815
[17] Kim S, Lim Y, Kim H, Park J and Lee B 2008 Appl. Phys. Lett. 92 013103
[18] Kim H C, Ko H and Cheng M 2009 Opt. Express 17 3078
[19] Fang Z Y, Lin C F, Ma R M, Huang S and Zhu X 2010 ACS Nano 4 75
[20] Neacsu C C, Berweger S, Olmon R L, Saraf L V, Ropers C and Raschke M B 2010 Nano Lett. 10 592
[21] Lin L, Xiao M G, McGuinness L P and Roberts A 2010 Nano Lett. 10 1936
[22] Lerman G M, Yanai A, Ben-Yosef N and Levy U 2010 Opt. Express 18 10871
[23] Maier S 2007 Plasmonics: Fundamentals and Applications (New York: Springer) p. 158
[24] Genet C and Ebbesen T W 2007 Nature 445 39
[1] Lattice plasmon mode excitation via near-field coupling
Yun Lin(林蕴), Shuo Shen(申烁), Xiang Gao(高祥), and Liancheng Wang(汪炼成). Chin. Phys. B, 2022, 31(1): 014214.
[2] Oxide-aperture-dependent output characteristics of circularly symmetric VCSEL structure
Wen-Yuan Liao(廖文渊), Jian Li(李健), Chuan-Chuan Li(李川川), Xiao-Feng Guo(郭小峰), Wen-Tao Guo(郭文涛), Wei-Hua Liu(刘维华), Yang-Jie Zhang(张杨杰), Xin Wei(韦欣), Man-Qing Tan(谭满清). Chin. Phys. B, 2020, 29(2): 024201.
[3] Synthesis and surface plasmon resonance of Au-ZnO Janus nanostructures
Jun Zhou(周俊), Jian-Shuo Zhang(张建烁), Guo-Yu Xian(冼国裕), Qi Qi(齐琦), Shang-Zhi Gu(顾尚志), Cheng-Min Shen(申承民), Zhao-Hua Cheng(成昭华), Sheng-Tai He(何声太), Hai-Tao Yang(杨海涛). Chin. Phys. B, 2019, 28(8): 083301.
[4] Propagation characteristics of oblique incidence terahertz wave through non-uniform plasma
Antao Chen(陈安涛), Haoyu Sun(孙浩宇), Yiping Han(韩一平), Jiajie Wang(汪加洁), Zhiwei Cui(崔志伟). Chin. Phys. B, 2019, 28(1): 014201.
[5] Light trapping and optical absorption enhancement in vertical semiconductor Si/SiO2 nanowire arrays
Ying Wang(王莹), Xin-Hua Li(李新化). Chin. Phys. B, 2018, 27(2): 026102.
[6] Hybrid sub-gridding ADE-FDTD method of modeling periodic metallic nanoparticle arrays
Tu-Lu Liang(梁图禄), Wei Shao(邵维), Xiao-Kun Wei(魏晓琨), Mu-Sheng Liang(梁木生). Chin. Phys. B, 2018, 27(10): 100204.
[7] Investigation of three-pulse photon echo in thick crystal using finite-difference time-domain method
Xiu-Rong Ma(马秀荣), Lin Xu(徐林), Shi-Yuan Chang(常世元), Shuang-Gen Zhang(张双根). Chin. Phys. B, 2017, 26(4): 044201.
[8] Finite-difference time-domain modeling of curved material interfaces by using boundary condition equations method
Jia Lu(卢佳), Huaichun Zhou(周怀春). Chin. Phys. B, 2016, 25(9): 090203.
[9] Optical simulation of in-plane-switching blue phase liquid crystal display using the finite-difference time-domain method
Hu Dou(窦虎), Hongmei Ma(马红梅), Yu-Bao Sun(孙玉宝). Chin. Phys. B, 2016, 25(9): 094221.
[10] A subwavelength metal-grating assisted sensor of Kretschmann style for investigating the sample with high refractive index
Xu-Feng Li(李旭峰), Wei Peng(彭伟), Ya-Li Zhao(赵亚丽), Qiao Wang(王乔), Ji-Lin Wei(魏计林). Chin. Phys. B, 2016, 25(3): 037303.
[11] An efficient locally one-dimensional finite-difference time-domain method based on the conformal scheme
Wei Xiao-Kun (魏晓琨), Shao Wei (邵维), Shi Sheng-Bing (石胜兵), Zhang Yong (张勇), Wang Bing-Zhong (王秉中). Chin. Phys. B, 2015, 24(7): 070203.
[12] Uniform stable conformal convolutional perfectly matched layer for enlarged cell technique conformal finite-difference time-domain method
Wang Yue (王玥), Wang Jian-Guo (王建国), Chen Zai-Gao (陈再高). Chin. Phys. B, 2015, 24(2): 024101.
[13] Enhanced light absorption of silicon in the near-infrared band by designed gold nanostructures
Liu Ju (刘菊), Zhong Xiao-Lan (钟晓岚), Li Zhi-Yuan (李志远). Chin. Phys. B, 2014, 23(4): 047306.
[14] A spherical higher-order finite-difference time-domain algorithm with perfectly matched layer
Liu Ya-Wen (刘亚文), Chen Yi-Wang (陈亦望), Zhang Pin (张品), Liu Zong-Xin (刘宗信). Chin. Phys. B, 2014, 23(12): 124102.
[15] Rear-surface light intensification caused by Hertzian-conical crack in 355-nm silica optics
Zhang Chun-Lai (章春来), Yuan Xiao-Dong (袁晓东), Xiang Xia (向霞), Wang Zhi-Guo (王治国), Liu Chun-Ming (刘春明), Li Li (李莉), He Shao-Bo (贺少勃), Zu Xiao-Tao (祖小涛). Chin. Phys. B, 2012, 21(9): 094213.
No Suggested Reading articles found!