|
|
Thermal vacuum state for the two-coupled-oscillator model at finite temperature:Derivation and application |
Xu Xue-Xiang (徐学翔)a b, Hu Li-Yun (胡利云)a b, Guo Qin (郭琴)a b, Fan Hong-Yi (范洪义)c |
a College of Physics and Communication Electronics, Jiangxi Normal University, Nanchang 330022, China; b Key Laboratory of Optoelectronic and Telecommunication of Jiangxi, Nanchang 330022, China; c Department of Physics, Shanghai Jiao Tong University, Shanghai 200030, China |
|
|
Abstract Following the spirit of thermo field dynamics initiated by Takahashi and Umezawa, we employ the technique of integration within an ordered product of operators to derive the thermal vacuum state (TVS) for the Hamiltonian H of the two-coupled-oscillator model. The ensemble averages of the system are derived conveniently by using the TVS. In addition, the entropy for this system is discussed based on the relation between the generalized Hellmann-Feynman theorem and the entroy variation in the context of the TVS.
|
Received: 25 February 2013
Revised: 22 March 2013
Accepted manuscript online:
|
PACS:
|
03.65.-w
|
(Quantum mechanics)
|
|
03.65.Yz
|
(Decoherence; open systems; quantum statistical methods)
|
|
05.30.-d
|
(Quantum statistical mechanics)
|
|
42.50
|
|
|
-p
|
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11175113 and 11264018), the Natural Science Foundation of Jiangxi Province, China (Grant Nos. 20132BAB212006, 20114BAB202004, and 2009GZW0006), the Research Foundation of the Education Department of Jiangxi Province, China (Grant No. GJJ12171), and the Open Foundation of the Key Laboratory of Optoelectronic and Telecommunication of Jiangxi Province, China (Grant No. 2013004). |
Corresponding Authors:
Xu Xue-Xiang
E-mail: xxxjxnu@gmail.com
|
Cite this article:
Xu Xue-Xiang (徐学翔), Hu Li-Yun (胡利云), Guo Qin (郭琴), Fan Hong-Yi (范洪义) Thermal vacuum state for the two-coupled-oscillator model at finite temperature:Derivation and application 2013 Chin. Phys. B 22 090302
|
[1] |
Louisell W H 1973 Quantum Statistical Properties of Radiation (New York: John Wiley)
|
[2] |
Fan H Y and Liang X T 2000 Chin. Phys. Lett. 17 174
|
[3] |
Brunelli M, Olivares S and Paris M G A 2011 Phys. Rev. A 84 032105
|
[4] |
Takahashi Y and Umezawa H 1975 Collective Phenomena 2 55
|
[5] |
Memorial Issue for H. Umezawa 1996 Int. J. Mod. Phys. B 10 1563
|
[6] |
Hu L Y and Fan H Y 2009 Chin. Phys. Lett. 26 090307
|
[7] |
Xu X X, Fan H Y, Hu L Y and Yuan H C 2011 Physca A 390 18
|
[8] |
Chizhov A V and Nazmitdinov R G 2008 Phys. Rev. A 78 064302
|
[9] |
Amico L, Fazio R, Osterloh A and Vedral V 2008 Rev. Mod. Phys. 80 517
|
[10] |
Fan H Y and Fan Y 2006 Ann. Phys. 321 480
|
[11] |
Hu L Y and Fan H Y 2009 Mod. Phys. Lett. A 24 2263
|
[12] |
Xu X X, Hu L Y and Fan H Y 2011 Mod. Phys. Lett. B 25 31
|
[13] |
Schieve W C and Horwitz L P 2009 Quantum Statistical Mechanics (New York: Cambridge University Press)
|
[14] |
Fan H Y, Xu X X and Hu L Y 2010 Physica A 389 2014
|
[15] |
Fan H Y, Xu X X and Hu L Y 2010 Mod. Phys. Lett. B 24 271
|
[16] |
Xu Y J, Wang C C, Wang X C and Fan H Y 2012 Int. J. Theor. Phys. 51 1062
|
[17] |
Fan H Y, Xu X X and Hu L Y 2010 Chin. Phys. B 19 060502
|
[18] |
Fan H Y and Chen B Z 1995 Phys. Lett. A 203 95
|
[19] |
Fan H Y 1990 J. Math. Phys. 31 257
|
[20] |
Hu L Y, Fan H Y and Zhang Z M 2013 Chin. Phys. B 22 034202
|
[21] |
Puri R R 2001 Mathematical Methods of Quantum Optics (Berlin: Springer-Verlag)
|
[22] |
Glauber R J 1963 Phys. Rev. 130 2529
|
[23] |
Glauber R J 1963 Phys. Rev. 131 2766
|
[24] |
Kenfack A and Zyczkowski K 2004 J. Opt. B: Quantum Semiclass. Opt. 6 396
|
[25] |
Xu X X, Xiong L S, Yuan H C, Hu L Y, Wang Z, Wang S and Fan H Y 2013 Optik 124 1814
|
[26] |
Jiang N Q and Zheng Y Z 2006 Phys. Rev. A 74 012306
|
[27] |
Hu L Y, W S and Zhang Z M 2012 Chin. Phys. B 21 064207
|
[28] |
Zhang G, Zhou J and Xue Z Y 2013 Chin. Phys. B 22 040307
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|