Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(7): 070504    DOI: 10.1088/1674-1056/22/7/070504
GENERAL Prev   Next  

Generalized projective synchronization of two coupled complex networks with different sizes

Li Ke-Zana, He Ena, Zeng Zhao-Rongb, Chi K. Tsec
a School of Mathematics and Computing Science, Guilin University of Electronic Technology, Guilin 541004, China;
b School of Business, Guilin University of Electronic Technology, Guilin 541004, China;
c Department of Electronic and Information Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong, China
Abstract  We investigate a new generalized projective synchronization (GPS) between two complex dynamical networks of different sizes. To the best of our knowledge, most current studies on the projective synchronization have dealt with coupled networks with the same size. By generalized projective synchronization, we mean that the states of nodes in each network can realize complete synchronization, and the states of pair nodes from both networks can achieve projective synchronization. By using the stability theory of dynamical system, several sufficient conditions for guaranteeing the existence of the generalized projective synchronization under feedback control and adaptive control are obtained. As an example, we use Chua's circuits to demonstrate the effectiveness of our proposed approach.
Keywords:  complex network      projective synchronization      adaptive control  
Received:  27 November 2012      Revised:  02 February 2013      Published:  01 June 2013
PACS:  05.45.Xt (Synchronization; coupled oscillators)  
  05.45.Gg (Control of chaos, applications of chaos)  
  89.75.Hc (Networks and genealogical trees)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61004101, 11161013, and 61164020) and the Natural Science Foundation of Guangxi Province, China (Grant Nos. 2011GXNSFB018059, 2011GXNSFA018136, and 2011GXNSFA018134).
Corresponding Authors:  Li Ke-Zan     E-mail:

Cite this article: 

Li Ke-Zan, He En, Zeng Zhao-Rong, Chi K. Tse Generalized projective synchronization of two coupled complex networks with different sizes 2013 Chin. Phys. B 22 070504

[1] Cohen J E, Briand F and Newman C M 1990 Community Food Webs: Data and Theory (Berlin: Springer-Verlag) p. 319
[2] Floyd S and Jacobson V 1994 IEEEACM Trans. Netw. 2 122
[3] Scott J 2000 Social Network Analysis: a Handbook (London: Sage) p. 224
[4] Pastor-Satorras R and Vespignani A 2001 Phys. Rev. E 63 066117
[5] Small M and Tse C K 2005 Int. J. Bifurcat. Chaos 15 1745
[6] Fu X, Small M and Walker D M 2008 Phys. Rev. E 77 036113
[7] Nozawa H 1992 Chaos 2 377
[8] Erdös P and Rényi A 1960 Publ. Math. Inst. Hung. Acad. Sci. 5 17
[9] Duan Z, Chen G and Huang L 2008 Phys. Lett. A 372 3741
[10] Yu W, Chen G and Lü J 2009 Automatica 45 429
[11] Yu W, Chen G and Cao M 2011 IEEE Trans. Automat. Contr. 56 1436
[12] Wen G, Duan Z, Chen G and Geng X 2011 Physica A 390 4012
[13] Pecora L M and Carroll T L 1990 Nature 64 821
[14] Li Z and Han C 2002 Chin. Phys. 11 666
[15] Chen S, Zhao L and Liu J 2002 Chin. Phys. 11 543
[16] Li Y, Liu Z and Zhang J 2008 Chin. Phys. Lett. 25 874
[17] Pecora L M 1998 Phys. Rev. E 58 347
[18] Pecora L M and Carroll T L 1998 Phys. Rev. Lett. 80 2109
[19] Ma Z, Zhang G, Wang Y and Liu Z 2008 Chaos Soliton. Fract. 41 155101
[20] Wang K, Teng Z and Jiang H 2008 Phys. Lett. A 387 631
[21] Wu Y, Li C, Wu Y and Kurths J 2012 Commun. Nonlinear Sci. Numer. Simulat. 17 349
[22] Liu H, Chen J, Lü J and Cao M 2010 J. Phys. A: Math. Theor. 389 1759
[23] Zheng S, Bi Q and Cai G 2009 Phys. Lett. A 373 1553
[24] Du H 2011 Chaos Soliton. Fract. 44 510
[25] Hua M, Yang Y, Xu Z, Zhang R and Guo L 2007 Phys. Lett. A 381 457
[26] Li C and Liao X 2006 Int. J. Bifurcat. Chaos 16 1041
[27] Zheng S 2012 J. Inf. Comput. Sci. 7 11
[28] Sun W and Chen Z 2010 Appl. Math. Comput. 216 2301
[29] Mainieri R and Rehacek J 1999 Phys. Rev. Lett. 15 3042
[30] Wu X and Lu H 2010 Phys. Lett. A 374 3932
[31] Li K, Small M and Fu X 2008 J. Phys. A: Math. Theor. 41 505101
[32] Lu W and Chen T 2006 Physica D 213 214
[1] Improving robustness of complex networks by a new capacity allocation strategy
Jun Liu(刘军). Chin. Phys. B, 2021, 30(1): 016401.
[2] Manufacturing enterprise collaboration network: An empirical research and evolutionary model
Ji-Wei Hu(胡辑伟), Song Gao(高松), Jun-Wei Yan(严俊伟), Ping Lou(娄平), Yong Yin(尹勇). Chin. Phys. B, 2020, 29(8): 088901.
[3] Influential nodes identification in complex networks based on global and local information
Yuan-Zhi Yang(杨远志), Min Hu(胡敏), Tai-Yu Huang(黄泰愚). Chin. Phys. B, 2020, 29(8): 088903.
[4] Network correlation between investor's herding behavior and overconfidence behavior
Mao Zhang(张昴), Yi-Ming Wang(王一鸣). Chin. Phys. B, 2020, 29(4): 048901.
[5] Identifying influential spreaders in complex networks based on entropy weight method and gravity law
Xiao-Li Yan(闫小丽), Ya-Peng Cui(崔亚鹏), Shun-Jiang Ni(倪顺江). Chin. Phys. B, 2020, 29(4): 048902.
[6] Effect of degree correlation on edge controllability of real networks
Shu-Lin Liu(刘树林), Shao-Peng Pang(庞少鹏). Chin. Phys. B, 2020, 29(10): 100202.
[7] Modeling and analysis of the ocean dynamic with Gaussian complex network
Xin Sun(孙鑫), Yongbo Yu(于勇波), Yuting Yang(杨玉婷), Junyu Dong(董军宇), Christian Böhm(陈学恩), Xueen Chen. Chin. Phys. B, 2020, 29(10): 108901.
[8] Pyramid scheme model for consumption rebate frauds
Yong Shi(石勇), Bo Li(李博), Wen Long(龙文). Chin. Phys. B, 2019, 28(7): 078901.
[9] Exploring evolutionary features of directed weighted hazard network in the subway construction
Gong-Yu Hou(侯公羽), Cong Jin(靳聪), Zhe-Dong Xu(许哲东), Ping Yu(于萍), Yi-Yi Cao(曹怡怡). Chin. Phys. B, 2019, 28(3): 038901.
[10] Theoretical analyses of stock correlations affected by subprime crisis and total assets: Network properties and corresponding physical mechanisms
Shi-Zhao Zhu(朱世钊), Yu-Qing Wang(王玉青), Bing-Hong Wang(汪秉宏). Chin. Phys. B, 2019, 28(10): 108901.
[11] Coordinated chaos control of urban expressway based on synchronization of complex networks
Ming-bao Pang(庞明宝), Yu-man Huang(黄玉满). Chin. Phys. B, 2018, 27(11): 118902.
[12] Detecting overlapping communities based on vital nodes in complex networks
Xingyuan Wang(王兴元), Yu Wang(王宇), Xiaomeng Qin(秦小蒙), Rui Li(李睿), Justine Eustace. Chin. Phys. B, 2018, 27(10): 100504.
[13] Dominant phase-advanced driving analysis of self-sustained oscillations in biological networks
Zhi-gang Zheng(郑志刚), Yu Qian(钱郁). Chin. Phys. B, 2018, 27(1): 018901.
[14] Temperature dependence of heat conduction coefficient in nanotube/nanowire networks
Kezhao Xiong(熊科诏), Zonghua Liu(刘宗华). Chin. Phys. B, 2017, 26(9): 098904.
[15] Dynamic analysis and fractional-order adaptive sliding mode control for a novel fractional-order ferroresonance system
Ningning Yang(杨宁宁), Yuchao Han(韩宇超), Chaojun Wu(吴朝俊), Rong Jia(贾嵘), Chongxin Liu(刘崇新). Chin. Phys. B, 2017, 26(8): 080503.
No Suggested Reading articles found!