Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(7): 070505    DOI: 10.1088/1674-1056/22/7/070505
RAPID COMMUNICATION Prev   Next  

Normal thermal conduction in lattice models with asymmetric harmonic interparticle interactions

Zhong Yi (钟毅), Zhang Yong (张勇), Wang Jiao (王矫), Zhao Hong (赵鸿)
Department of Physics, Institute of Theoretical Physics and Astrophysics, Xiamen University, Xiamen 361005, China
Abstract  We study the thermal conduction behaviors of one-dimensional lattice models with asymmetric harmonic interparticle interactions. Normal thermal conductivity independent of the system size is observed when the lattice chains are long enough. Because only the harmonic interactions are involved, the result confirms without ambiguity that asymmetry plays a key role in resulting in normal thermal conduction in one-dimensional momentum conserving lattices. Both equilibrium and nonequilibrium simulations are performed to support the conclusion.
Keywords:  anharmonicity      normal thermal conduction      Green-Kubo formula  
Received:  01 May 2013      Accepted manuscript online: 
PACS:  05.60.Cd (Classical transport)  
  44.10.+i (Heat conduction)  
  66.70.-f (Nonelectronic thermal conduction and heat-pulse propagation in solids;thermal waves)  
  63.20.-e (Phonons in crystal lattices)  
Fund: Project supported by the National Natural Science Foundation of China (Grants Nos. 10925525 and 10805036).
Corresponding Authors:  Zhao Hong     E-mail:  zhaoh@xmu.edu.cn

Cite this article: 

Zhong Yi (钟毅), Zhang Yong (张勇), Wang Jiao (王矫), Zhao Hong (赵鸿) Normal thermal conduction in lattice models with asymmetric harmonic interparticle interactions 2013 Chin. Phys. B 22 070505

[1] Rieder Z, Lebowitz J L and Lieb E 1967 J. Math. Phys. 8 1073
[2] Casati G, Ford J, Vivaldi F and Visscher W M 1984 Phys. Rev. Lett. 52 1861
[3] Prosen T and Robnik M 1992 J. Phys. A 25 3449
[4] Lepri S, Livi R and Politi A 1997 Phys. Rev. Lett. 78 1896
[5] Li B, Casati G, Wang J and Prosen T 2004 Phys. Rev. Lett. 92 254301
[6] Prosen T and Campbell D K 2005 Chaos 15 015117
[7] Prosen T and Campbell D K 2000 Phys. Rev. Lett. 84 2857
[8] Hu B, Li B and Zhao H 1998 Phys. Rev. E 57 2992
[9] Hu B, Li B and Zhao H 2000 Phys. Rev. E 61 3828
[10] Mai T, Dhar A and Narayan O 2007 Phys. Rev. Lett. 98 184301
[11] Wang L and Wang T 2011 Europhys. Lett. 93 54002
[12] Lepri S, Livi R and Politi A 2003 Phys. Rep. 377 1
[13] Dhar A 2008 Adv. Phys. 57 457
[14] Prosen T and Campbell D K 2000 Phys. Rev. Lett. 84 2857
[15] Narayan O and Ramaswamy S 2002 Phys. Rev. Lett. 89 200601
[16] Mai T and Narayan O 2006 Phys. Rev. E 73 061202
[17] Lee-Dadswell G R, Nickel B G and Gray C G 2005 Phys. Rev. E 72 031202
[18] Lee-Dadswell G R, Nickel B G and Gray C G 2008 J. Stat. Phys. 132 1
[19] Delfini L, Lepri S, Livi R and Politi A 2006 Phys. Rev. E 73 060201
[20] Delfini L, Lepri S, Livi R and Politi A 2007J. Stat. Mech. P02007
[21] Wang J S and Li B 2004 Phys. Rev. Lett. 92 074302
[22] Wang J S and Li B 2004 Phys. Rev. E 70 021204
[23] Giardiná C, Livi R, Politi A and Vassalli M 2000 Phys. Rev. Lett. 84 2144
[24] Gendelman O V and Savin A V 2000 Phys. Rev. Lett. 84 2381
[25] Giardiná C and Kurchan J 2005 J. Stat. Mech. P05009
[26] Lee-Dadswell G R, Turner E, Ettinger J and Moy M 2010 Phys. Rev. E 82 061118
[27] Zhong Y, Zhang Y, Wang J and Zhao H 2012 Phys. Rev. E 85 060102
[28] Chen S D, Zhang Y, Wang J and Zhao H 2012 arXiv:1204.5933
[29] Kittel C 1996 Introduction to Solid State Physics 7th edn. (New Jersey: Wiley) p. 130
[30] Green M S 1954 J. Chem. Phys. 22 398
[31] Kubo R, Yokota M and Nakajima S 1957 J. Phys. Soc. Jpn. 12 1203
[32] Nose S 1984 J. Chem. Phys. 81 511
[33] Hoover W G 1985 Phys. Rev. A 31 1695
[1] Tunable anharmonicity versus high-performance thermoelectrics and permeation in multilayer (GaN)1-x(ZnO)x
Hanpu Liang(梁汉普) and Yifeng Duan(段益峰). Chin. Phys. B, 2022, 31(7): 076301.
[2] High-temperature thermodynamics of silver:Semi-empirical approach
R H Joshi, B Y Thakore, P R Vyas, A R Jani, N K Bhatt. Chin. Phys. B, 2017, 26(11): 116502.
[3] ANALYTIC EQUATION OF STATE FOR GENERALIZED LENNARD-JONES SOLID INCLUDING LOWEST-ORDER ANHARMONIC AND CORRELATION CORRECTIONS
Sun Jiu-xun (孙久勋), Cai Ling-cang (蔡灵仓), Wu Qiang (吴强), Jing Fu-qian (经福谦). Chin. Phys. B, 2000, 9(12): 927-933.
No Suggested Reading articles found!