Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(12): 123602    DOI: 10.1088/1674-1056/22/12/123602
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

Computer study of the spectral characteristics of the disperse water–methane system

A. Y. Galashev
Institute of Industrial Ecology, Ural Branch, Russian Academy of Sciences 62099, S. Kovalevskaya Str., 20, Yekaterinburg, Russia
Abstract  The interaction of water clusters that adsorbed methane molecules with infrared radiation is studied by molecular dynamics. The presence of methane molecules in the disperse water system leads to an increase in absorption and emission of infrared radiation and a strong depletion of the Raman spectrum. In this case, the reflection coefficient of a monochromatic plane electromagnetic wave increases and its frequency spectrum significantly changes. The comparison of experimental data for similar characteristics of water, methane, or their mixtures is presented.
Keywords:  adsorption      methane      water cluster      infrared and Raman spectra  
Received:  01 April 2013      Revised:  06 May 2013      Accepted manuscript online: 
PACS:  36.40.Mr (Spectroscopy and geometrical structure of clusters)  
  36.20.Ng (Vibrational and rotational structure, infrared and Raman spectra)  
  92.70.Cp (Atmosphere)  
  92.70.Er (Biogeochemical processes)  
Corresponding Authors:  A. Y. Galashev     E-mail:  galashev@ecko.uran.ru

Cite this article: 

A. Y. Galashev Computer study of the spectral characteristics of the disperse water–methane system 2013 Chin. Phys. B 22 123602

[1] Boudon V, Rey M and Loete M 2006 J. Quantum Spectrosc. Radiat. Transfer 98 394
[2] Roush T L 2001 J. Geophys. Res. 106 33315
[3] Bernstein M P, Cruikshank D P and Sandford S A 2006 Icarus 181 302
[4] Hudgins D M, Sandford S A, Allamandola L J and Tielens A G G M 1993 Astrophys. J., Suppl. Ser. 86 713
[5] Laaksonen A and Stilbs P 1991 Mol. Phys. 74 747
[6] Chandler D 2002 Nature 417 491
[7] Chau P L and Mancera R L 1999 Mol. Phys. 96 109
[8] Lambeth B P Jr, Junghans C, Kremer K, Clementi C and Delle Site L 2010 J. Chem. Phys. 133 221101
[9] Galashev A Y 2010 Mol. Simul. 36 273
[10] Galashev A E, Chukanov V N, Novruzov A N and Novruzova O A 2006 High Temp. 44 364
[11] Galashev A E, Rakhmanova O R, Galasheva O A and Novruzov A N 2006 Phase Transitions 79 911
[12] Dang L X and Chang T M 1997 J. Chem. Phys. 106 8149
[13] Jorgensen W L and Madura J D 1983 J. Am. Chem. Soc. 105 1407
[14] Galashev A E and Rakhmanova O R 2012 Chin. Phys. B 21 113602
[15] New M H and Berne B J 1995 J. Am. Chem. Soc. 117 7172
[16] Haile J M 1992 Molecular Dynamics Simulation: Elementary Methods (New York: Wiley) p. 160
[17] Landau L D and Lifshitz E M 1982 Electrodynamics of Continuous Media (Moscow: Nauka) p. 585
[18] Prokhorov A M 1988 Physical Encyclopedia (Moscow: Sovetskaya Entciklopediya) p. 702
[19] Koshlaykov V N 1985 Problems of Solid Body Dynamics and Applied Theory of Gyroscopes (Moscow: Nauka) p. 14
[20] Sonnenschein R 1985 J. Comput. Phys. 59 347
[21] Bresme F 2001 J. Chem. Phys. 115 7564
[22] Neumann M 1985 J. Chem. Phys. 82 5663
[23] Bosma W B, Fried L E and Mukamel S 1993 J. Chem. Phys. 98 4413
[24] Neumann M 1986 J. Chem. Phys. 85 1567
[25] Stern H A and Berne B J 2001 J. Chem. Phys. 115 7622
[26] Lemberg H L and Stillinger F H 1975 J. Chem. Phys. 62 1677
[27] Rahman A, Stillinger F H and Lemberg H L 1975 J. Chem. Phys. 63 5223
[28] Saint-Martin H, Hess B and Berendsen H J C 2004 J. Chem. Phys. 120 11133
[29] Goggin P L and Carr C 1986 Water and Aqueous Solutions (Boston: Adam Hilger) p. 149
[30] Chamberland A, Belzile R and Cabana A 1970 Can. J. Chem. 48 1129
[31] Vallee P, Lafait J, Ghomi M, Jouanne M and Morhange J F 2003 J. Mol. Struct. 651 371
[32] Chou I M, Sharma A, Burruss C, Shu J, Mao H K, Hemley R J, Goncharov F, Stern L A and Kirby H 2000 Proc. Natl. Acad. Sci. USA 97 13484
[33] Ripmeester J A, Ratcliffe C I, Klug D D and Tse J S 1994 Ann. N. Y. Acad. Sci. 715 161
[34] Nassar R and Bernath P 2003 J. Quantum Spectrosc. Radiat. Transfer 82 279
[1] Formation of nanobubbles generated by hydrate decomposition: A molecular dynamics study
Zilin Wang(王梓霖), Liang Yang(杨亮), Changsheng Liu(刘长生), and Shiwei Lin(林仕伟). Chin. Phys. B, 2023, 32(2): 023101.
[2] Molecular dynamics simulation of interaction between nanorod and phospholipid molecules bilayer
Xin Wang(王鑫), Xiang-Qin Li(李香琴), Tian-Qing Liu(刘天庆), Li-Dan Zhao(赵丽丹), Ke-Dong Song(宋克东), and Dan Ge(葛丹). Chin. Phys. B, 2023, 32(1): 016201.
[3] Adsorption dynamics of double-stranded DNA on a graphene oxide surface with both large unoxidized and oxidized regions
Mengjiao Wu(吴梦娇), Huishu Ma(马慧姝), Haiping Fang(方海平), Li Yang(阳丽), and Xiaoling Lei(雷晓玲). Chin. Phys. B, 2023, 32(1): 018701.
[4] Insights into the adsorption of water and oxygen on the cubic CsPbBr3 surfaces: A first-principles study
Xin Zhang(张鑫), Ruge Quhe(屈贺如歌), and Ming Lei(雷鸣). Chin. Phys. B, 2022, 31(4): 046401.
[5] AA-stacked borophene-graphene bilayer as an anode material for alkali-metal ion batteries with a superhigh capacity
Yi-Bo Liang(梁艺博), Zhao Liu(刘钊), Jing Wang(王静), and Ying Liu(刘英). Chin. Phys. B, 2022, 31(11): 116302.
[6] Water adsorption performance of UiO-66 modified by MgCl2 for heat transformation applications
Jia-Li Liu(刘佳丽), Guo-Dong Fu(付国栋), Ping Wu(吴平), Shang Liu(刘尚), Jin-Guang Yang(杨金光), Shi-Ping Zhang(张师平), Li Wang(王立), Min Xu(许闽), and Xiu-Lan Huai(淮秀兰). Chin. Phys. B, 2022, 31(11): 118101.
[7] Adsorption of CO2 on MgAl layered double hydroxides: Effect of intercalated anion and alkaline etching time
Yan-Yan Feng(冯艳艳), Xiao-Di Niu(牛潇迪), Yong-Hui Xu (徐永辉), and Wen Yang(杨文). Chin. Phys. B, 2021, 30(4): 048101.
[8] First-principles study of co-adsorption behavior of O2 and CO2 molecules on δ -Pu(100) surface
Chun-Bao Qi(戚春保), Tao Wang(王涛), Ru-Song Li(李如松), Jin-Tao Wang(王金涛), Ming-Ao Qin(秦铭澳), and Si-Hao Tao(陶思昊). Chin. Phys. B, 2021, 30(2): 026601.
[9] Surface for methane combustion: O(3P)+CH4→OH+CH3
Ya Peng(彭亚), Zhong-An Jiang(蒋仲安), Ju-Shi Chen(陈举师). Chin. Phys. B, 2020, 29(7): 073401.
[10] High-resolution angle-resolved photoemission study of oxygen adsorbed Fe/MgO(001)
Mingtian Zheng, Eike F. Schwier, Hideaki Iwasawa, Kenya Shimada. Chin. Phys. B, 2020, 29(6): 067901.
[11] STM study of selenium adsorption on Au(111) surface
Bin Liu(刘斌), Yuan Zhuang(庄源), Yande Que(阙炎德), Chaoqiang Xu(徐超强), Xudong Xiao(肖旭东). Chin. Phys. B, 2020, 29(5): 056801.
[12] Beryllium carbide as diffusion barrier against Cu: First-principles study
Hua-Liang Cao(曹华亮), Xin-Lu Cheng(程新路), Hong Zhang(张红). Chin. Phys. B, 2020, 29(1): 016601.
[13] Adsorption and desorption phenomena on thermally annealed multi-walled carbon nanotubes by XANES study
Camile Rodolphe Tchenguem Kamto, Bridinette Thiodjio Sendja, Jeannot Mane Mane. Chin. Phys. B, 2019, 28(9): 093101.
[14] Real-space observation on standing configurations of phenylacetylene on Cu (111) by scanning probe microscopy
Jing Qi(戚竞), Yi-Xuan Gao(高艺璇), Li Huang(黄立), Xiao Lin(林晓), Jia-Jia Dong(董佳家), Shi-Xuan Du(杜世萱), Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2019, 28(6): 066801.
[15] Photoelectrocatalytic oxidation of methane into methanol and formic acid over ZnO/graphene/polyaniline catalyst
Jia Liu(刘佳), Ying-Hua Zhang(张英华), Zhi-Ming Bai(白智明), Zhi-An Huang(黄志安), Yu-Kun Gao(高玉坤). Chin. Phys. B, 2019, 28(4): 048101.
No Suggested Reading articles found!