Paraconductivity study in ErBa2Cu3-xMxO7-δ (M = Zn, Fe) superconductors
A. Sedkya b, S. B. Mohameda
a Physics Department, Faculty of Science, King Faisal University, Al-Hassa 31982, Saudi Arabia; b Physics Department, Faculty of Science, Assiut University, Assiut, Egypt
Abstract We report here the paraconductivity of ErBa2Cu3-xMxO7-δ (M = Zn and Fe) superconductors. The logarithmic plots of excess conductivity Δσ and reduced temperature C reveal two different exponents corresponding to crossover temperature as a result of shifting the order parameter from 2 to 3. The first exponent in the normal field region is close to 1, in which the order parameter dimensionality (OPD) is 2. The second exponent in the critical field region is close to 0.5, in which the OPD is 3. The coherence length, interlayer coupling, interlayer separation and carrier concentration decrease with increasing doping content, and their values for Fe samples are different from those of Zn samples. While anisotropy is increased with increasing doping content, it is generally higher for a Zn sample than that for an Fe sample. We also estimate several physical parameters such as upper critical magnetic fields in the a–b plane and along the c axis (Bab and Bc), and critical current density J at 0 K. Although Bab and Bc are generally increased with doping content increasing, the value of Bab is found to be twice more than that of Bc. A similar behavior is obtained for J (0 K) and its value is higher in the Fe sample than that in the Zn sample. These results are discussed in terms of oxygen deficiency, localization of carriers, and flux pinning, which are produced by doping.
Effects of preparation parameters on growth and properties of β-Ga2O3 film Zi-Hao Chen(陈子豪), Yong-Sheng Wang(王永胜), Ning Zhang(张宁), Bin Zhou(周兵), Jie Gao(高洁), Yan-Xia Wu(吴艳霞), Yong Ma(马永), Hong-Jun Hei(黑鸿君), Yan-Yan Shen(申艳艳), Zhi-Yong He(贺志勇), and Sheng-Wang Yu(于盛旺). Chin. Phys. B, 2023, 32(1): 017301.
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.