Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(8): 087301    DOI: 10.1088/1674-1056/21/8/087301

Oxygen vacancy in N-doped Cu2O crystals: A density functional theory study

Li Mina, Zhang Jun-Yinga, Zhang Yueb, Wang Tian-mina
a Key Laboratory of Micro-Nano Measurement, Manipulation and Physics (Ministry of Education), Department of Physics, Beihang University, Beijing 100191, China;
b School of Materials Science and Engineering, Beihang University, Beijing 100191, China
Abstract  The N-doping effects on the electronic properties of Cu2O crystals are investigated using density functional theory. The calculated results show that N-doped Cu2O with or without oxygen vacancy exhibits different modifications of electronic band structure. In N anion-doped Cu2O, some N 2p states overlap and mix with the O 2p valence band, leading to a slight narrowing of band gap compared with the undoped Cu2O. However, it is found that the coexistence of both N impurity and oxygen vacancy contributes to band gap widening which may account for the experimentally observed optical band gap widening by N doping.
Keywords:  oxygen vacancy      nitrogen      Cu2O      first-principles     
Received:  03 December 2011      Published:  01 July 2012
PACS:  73.20.At (Surface states, band structure, electron density of states)  
  73.20.-r (Electron states at surfaces and interfaces)  
  71.15.Mb (Density functional theory, local density approximation, gradient and other corrections)  
Fund: Project supported by the National High Technology Research and Development Program of China (Grant No. 2009AA03 Z428), the National Natural Science Foundation of China (Grant No. 50872005), and the Innovation Foundation of BUAA for Ph. D. Graduates and the Fundamental Research Funds for the Central Universities (Grant No. YWF-12-LKGY-005).
Corresponding Authors:  Zhang Jun-Ying     E-mail:

Cite this article: 

Li Min, Zhang Jun-Ying, Zhang Yue, Wang Tian-min Oxygen vacancy in N-doped Cu2O crystals: A density functional theory study 2012 Chin. Phys. B 21 087301

[1] Grondahl L O 1933 Rev. Mod. Phys. 5 141
[2] Porat O and Riess I 1995 Solid State Ionics 81 529
[3] Nolan M and Elliott S D 2006 Phys. Chem. Chem. Phys. 8 5350
[4] Poizot P, Laruelle S, Grugeon S, Dupront L and Taracon J M 2000 Nature 407 496
[5] Briskman R N 1992 Sol. Energy Mater. Sol. Cells 27 361
[6] Zhang J T, Liu J F, Peng Q, Wang X and Li Y D 2006 Chem. Mater. 18 867
[7] Rai B P 1988 Solar Cells: A Review. Sol. Cells 25 265
[8] Ishizuka S, Kato S, Okamoto Y and Akimoto K 2002 Appl. Phys. Lett. 80 950
[9] Nolan M and Elliott S D 2006 Phys. Chem. Chem. Phys. 8 5350
[10] Chen J, Jin G J and Ma Y Q 2009 Acta Phys. Sin. 58 2702 (in Chinese)
[11] Zhang X J, Gao P and Liu Q J 2010 Acta Phys. Sin. 59 4930 (in Chinese)
[12] Asahi R, Morikawa T, Ohwaki T, Aoki K and Taga Y 2001 Science 293 269
[13] Nakano Y, Morikawa T, Ohwaki T and Taga Y 2005 Appl. Phys. Lett. 87 232104
[14] Tsukazaki A, Ohtomo A, Onuma T, Ohtani M, Makino T, Sumiya M, Ohtani K, Chichibu S F, Fuke S, Segawa Y, Ohno H, Koinuma H and Kawasaki M 2005 Nature Mater. 4 42
[15] Wei Y, Hu H F, Wang Z Y, Cheng C P, Chen N T and Xie N 2011 Acta Phys. Sin. 60 027307 (in Chinese)
[16] Akimoto K, Ishizuka S, Yanagita M, Nawa Y, Paul G K and Saku-rai T 2006 Sol. Energy 80 715
[17] Ishizuka S, Kato S, Okamoto Y, Sakurai T and Akimoto K 2002 J. Cryst. Growth 237 616
[18] Ishizuka S, Kato S, Murayama T and Akimoto K 2001 Jpn. J. Appl. Phys. 40 2765
[19] Nakano Y, Saeki S and Morikawa T 2009 Appl. Phys. Lett. 94 022111
[20] Wickoff W G 1960 Crystal Structures Vol. 1 (New York: Wiley-Interscience)
[21] Werner A and Hocheimer H D 1982 Phys. Rev. B 25 5929
[22] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[23] Perdew J P, Burke K and Ernzerhof M 1997 Phys. Rev. Lett. 78 1396
[24] Perdew J P, Ruzsinszky A, Tao J, Staroverov V N, Scuseria G E and Csonka G I 2005 J. Chem. Phys. 123 62201
[25] Perdew J P, Burke K and Wang Y 1996 Phys. Rev. B 54 16533
[26] Milman V, Winkler B, White J A, Pickard C J and Payne M C 2000 Int. J. Quantum Chem. 77 895
[27] Long R and English N J 2009 Appl. Phys. Lett. 94 132102
[28] Ma X G, Wu Y, Lu Y H, Xu J, Wang Y J and Zhu Y F 2011 J. Phys. Chem. C 115 16963
[29] Wang P, Liu Z R, Lin F, Zhou G, Wu J, Duan W H, Gu B L and Zhang S B 2010 Phys. Rev. B 82 193103
[30] Baumeister P W 1961 Phys. Rev. 121 359
[31] Ghijsen J, Tjeng L H, van Elp J, Eskes H, Westerink J, Sawatsky G A and Czyzyk M T 1988 Phys. Rev. B 38 11322
[32] Ghijsen J, Tjeng L H, Eskes H, Sawatsky G A and Johnson R L 1990 Phys. Rev. B 42 2268
[33] Soon A, Todorova M, Delley B and Stampfl C 2007 Phys. Rev. B 75 125420
[34] Mart'inez-Ruiz A, Moreno M G and Takeuchi N 2003 Solid State Sci. 5 291
[35] Ching W Y, Xu Y N and Wong K W 1989 Phys. Rev. B 40 7684
[36] Soon A, Todorova M, Delley B and Stampfl C 2006 Phys. Rev. B 73 165424
[37] DiValentin C, Pacchioni G, Selloni A, Livraghi S and Giamello E 2005 J. Phys. Chem. B 109 11414
[38] Lee J, Park J and Cho J 2005 Appl. Phys. Lett. 87 011904
[39] Soon A, Sohnel T and Idriss H 2005 Surf. Sci. 579 131
[1] High performance Cu2O film/ZnO nanowires self-powered photodetector by electrochemical deposition
Deshuang Guo(郭德双), Wei Li(李微), Dengkui Wang(王登魁), Bingheng Meng(孟兵恒), Dan Fang(房丹), Zhipeng Wei(魏志鹏). Chin. Phys. B, 2020, 29(9): 098504.
[2] Surface-regulated triangular borophene as Dirac-like materials from density functional calculation investigation
Wenyu Fang(方文玉), Wenbin Kang(康文斌), Jun Zhao(赵军), Pengcheng Zhang(张鹏程). Chin. Phys. B, 2020, 29(9): 096301.
[3] Raman and infrared spectra of complex low energy tetrahedral carbon allotropes from first-principles calculations
Hui Wang(王翚), Ze-Yu Zhang(张泽宇), Xiao-Wu Cai(蔡小五), Zi-Han Liu(刘子晗), Yong-Xiang Zhang(张永翔), Zhen-Long Lv(吕珍龙), Wei-Wei Ju(琚伟伟), Hui-Hui Liu(刘汇慧), Tong-Wei Li(李同伟), Gang Liu(刘钢), Hai-Sheng Li(李海生), Hai-Tao Yan(闫海涛), Min Feng(冯敏). Chin. Phys. B, 2020, 29(9): 093601.
[4] Effects of Re, Ta, and W in [110] (001) dislocation core of γ/γ' interface to Ni-based superalloys: First-principles study
Chuanxi Zhu(朱传喜), Tao Yu(于涛). Chin. Phys. B, 2020, 29(9): 096101.
[5] Two-dimensional hexagonal Zn3Si2 monolayer: Dirac cone material and Dirac half-metallic manipulation
Yurou Guan(官雨柔), Lingling Song(宋玲玲), Hui Zhao(赵慧), Renjun Du(杜仁君), Liming Liu(刘力铭), Cuixia Yan(闫翠霞), Jinming Cai(蔡金明). Chin. Phys. B, 2020, 29(8): 087103.
[6] Tunable electronic structures of germanane/antimonene van der Waals heterostructures using an external electric field and normal strain
Xing-Yi Tan(谭兴毅), Li-Li Liu(刘利利), Da-Hua Ren(任达华). Chin. Phys. B, 2020, 29(7): 076102.
[7] Structural, mechanical, and electronic properties of Zr-Te compounds from first-principles calculations
Peng Wang(王鹏), Ning-Chao Zhang(张宁超), Cheng-Lu Jiang(蒋城露), Fu-Sheng Liu(刘福生), Zheng-Tang Liu(刘正堂), Qi-Jun Liu(刘其军). Chin. Phys. B, 2020, 29(7): 076201.
[8] Dependence of mechanical properties on the site occupancy of ternary alloying elements in γ'-Ni3Al: Ab initio description for shear and tensile deformation
Minru Wen(文敏儒), Xing Xie(谢兴), Huafeng Dong(董华锋), Fugen Wu(吴福根), Chong-Yu Wang(王崇愚). Chin. Phys. B, 2020, 29(7): 078103.
[9] Influence comparison of N2 and NH3 nitrogen sources on AlN films grown by halide vapor phase epitaxy
Jing-Jing Chen(陈晶晶), Jun Huang(黄俊), Xu-Jun Su(苏旭军), Mu-Tong Niu(牛牧童), Ke Xu(徐科). Chin. Phys. B, 2020, 29(7): 076802.
[10] Degenerate antiferromagnetic states in spinel oxide LiV2O4
Ben-Chao Gong(龚本超), Huan-Cheng Yang(杨焕成), Kui Jin(金魁), Kai Liu(刘凯), Zhong-Yi Lu(卢仲毅). Chin. Phys. B, 2020, 29(7): 077508.
[11] First-principles calculations of solute-vacancy interactions in aluminum
Sha-Sha Zhang(张莎莎), Zheng-Jun Yao(姚正军), Xiang-Shan Kong(孔祥山), Liang Chen(陈良), Jing-Yu Qin(秦敬玉). Chin. Phys. B, 2020, 29(6): 066103.
[12] First-principles calculation of influences of La-doping on electronic structures of KNN lead-free ceramics
Ting Wang(王挺), Yan-Chen Fan(樊晏辰), Jie Xing(邢洁), Ze Xu(徐泽), Geng Li(李庚), Ke Wang(王轲), Jia-Gang Wu(吴家刚), Jian-Guo Zhu(朱建国). Chin. Phys. B, 2020, 29(6): 067702.
[13] Prediction of structured void-containing 1T-PtTe2 monolayer with potential catalytic activity for hydrogen evolution reaction
Bao Lei(雷宝), Yu-Yang Zhang(张余洋), Shi-Xuan Du(杜世萱). Chin. Phys. B, 2020, 29(5): 058104.
[14] Ab initio calculations on oxygen vacancy defects in strained amorphous silica
Bao-Hua Zhou(周保花), Fu-Jie Zhang(张福杰), Xiao Liu(刘笑), Yu Song(宋宇), Xu Zuo(左旭). Chin. Phys. B, 2020, 29(4): 047103.
[15] Re effects in model Ni-based superalloys investigated with first-principles calculations and atom probe tomography
Dianwu Wang(王殿武), Chongyu Wang(王崇愚), Tao Yu(于涛), Wenqing Liu(刘文庆). Chin. Phys. B, 2020, 29(4): 043103.
No Suggested Reading articles found!