Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(8): 086101    DOI: 10.1088/1674-1056/21/8/086101
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Mechanical properties of silicon nanobeams with undercut evaluated by combining dynamic resonance test and finite element analysis

Zhang Jia-Hong (张加宏)a b, Mao Xiao-Li (冒晓莉)a b, Liu Qing-Quan (刘清惓)a b, Gu Fang (顾芳)c, Li Min (李敏)a b, Liu Heng (刘恒)a b, Ge Yi-Xian (葛益娴 )a b
a Jiangsu Key Laboratory of Meteorological Observation and Information Processing, Nanjing University of Information Science & Technology, Nanjing 210044, China;
b College of Electronic & Information Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China;
c College of Physics & Opto-Electronic Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China
Abstract  Mechanical properties of silicon nanobeams are of prime importance in nanoelectromechanical system applications. A numerical experimental method of determining resonant frequencies and Young's modulus of nanobeams by combining finite element analysis and frequency response tests based on an electrostatic excitation and visual detection by laser Doppler vibrometer is presented in this paper. Silicon nanobeams test structures are fabricated from silicon-on-insulator wafers by using a standard lithography and anisotropic wet etching release process, which inevitably generates the undercut of the nanobeam clamping. In conjunction with three-dimensional finite element numerical simulations incorporating the geometric undercut, dynamic resonance tests reveal that the undercut significantly reduces resonant frequencies of nanobeams due to the fact that it effectively increases the nanobeam length by a correct value Δ L, which is a key parameter that is correlated with deviations in the resonant frequencies predicted from the ideal Euler-Bernoulli beam theory and experimentally measured data. By using a least-square fit expression including Δ L, we finally extract Young's modulus from the measured resonance frequency versus effective length dependency and find that Young's modulus of silicon nanobeam with 200-nm thickness is close to that of bulk silicon. This result supports that the finite size effect due to surface effect does not play a role in mechanical elastic behaviour of silicon nanobeams with the thickness larger than 200 nm.
Keywords:  silicon nanobeams with undercut      mechanical properties      mechanical testing      finite element method  
Received:  06 December 2011      Revised:  03 February 2012      Accepted manuscript online: 
PACS:  61.46.Km (Structure of nanowires and nanorods (long, free or loosely attached, quantum wires and quantum rods, but not gate-isolated embedded quantum wires))  
  62.25.-g (Mechanical properties of nanoscale systems)  
  81.70.Bt (Mechanical testing, impact tests, static and dynamic loads)  
  02.70.Dh (Finite-element and Galerkin methods)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 41075026 and 61001044), the Open Research Fund of Key Laboratory of Microelectromechanical System of Ministry of Education, Southeast University, China (Grant Nos. 2009-03 and 2010-02), the Special Fund for Meteorology Research in the Public Interest, China (Grant No. GYHY200906037), and the Priority Academic Program Development of Sensor Networks and Modern Meteorological Equipment of Jiangsu Provincial Higher Education Institutions.
Corresponding Authors:  Zhang Jia-Hong     E-mail:  zjhnuist@yahoo.cn

Cite this article: 

Zhang Jia-Hong (张加宏), Mao Xiao-Li (冒晓莉), Liu Qing-Quan (刘清惓), Gu Fang (顾芳), Li Min (李敏), Liu Heng (刘恒), Ge Yi-Xian (葛益娴 ) Mechanical properties of silicon nanobeams with undercut evaluated by combining dynamic resonance test and finite element analysis 2012 Chin. Phys. B 21 086101

[1] Craighead H G 2000 Science 290 1532
[2] Feng X L, He R R, Yang P D and Roukes M L 2007 Nano Lett. 7 1953
[3] He R R and Yang P D 2006 Nature Nanotechnology 1 42
[4] Gil-Santos E, Ramos D, Martínez J, Fernández-Regúlez M, García R, Paulo Á S, Calleja M and Tamayo J 2010 Nature Nanotechnology 5 641
[5] Jin Q H, Li T, Zhou P and Wang Y L 2009 J. Nanomater. 2009 319842
[6] Kizuka T, Takatani Y, Asaka K and Yoshizaki R 2005 Phys. Rev. B 72 035333
[7] Zhu Y, Xu F, Qin Q, Fung W Y and Lu W 2009 Nano Lett. 9 3934
[8] Namazu T, Isono Y and Tanaka T 2000 J. Microelectromech. Syst. 9 450
[9] Virwani K R, Malshe A P, Schmidt W F and Sood D K 2003 Smart. Mater. Struct. 12 1028
[10] Paulo A S, Bokor J, Howe R T, He R, Yang P, Gao D, Carraro C and Maboudian R 2005 Appl. Phys. Lett. 87 053111
[11] Heidelberg A, Ngo L T, Wu B, Phillips M A, Sharma S, Kamins T I, Sader J E and Boland J J 2006 Nano Lett. 6 1101
[12] Gordon M J, Baron T, Dhalluin F, Gentile P and Ferret P 2009 Nano Lett. 9 525
[13] Hsin C L, Mai W J, Gu Y D, Gao Y F, Huang C T, Liu Y Z, Chen L J and Wang Z L 2008 Adv. Mater. 20 3919
[14] Li X X, Ono T, Wang Y L and Esashi M 2003 Appl. Phys. Lett. 83 3081
[15] Tabib-Azar M, Nassirou M, Wang R, Sharma S, Kamins T I, Islam M S and Williams R S 2005 Appl. Phys. Lett. 87 113102
[16] Belov M, Quitoriano N J, Sharma S, Hiebert W K, Kamins T I and Evoy S 2008 J. Appl. Phys. 103 074304
[17] Sohn Y S, Park J, Yoon G, Song J, Jee S W, Lee J H, Na S, Kwon T and Eom K 2010 Nanoscale Res. Lett. 5 211
[18] Stan G, Krylyuk S, Davydov A V and Cook R F 2010 Nano Lett. 10 2031
[19] Sadeghian H, Yang C K, Goosen J F L, van der Drift E, Bossche A, French P J and van Keulen F 2009 Appl. Phys. Lett. 94 221903
[20] Sadeghian H, Yang C K, Goosen J F L, Bossche A, Staufer U, French P J and van Keulen F 2010 J. Micromech. Microeng. 20 064012
[21] Agrawal R, Peng B, Gdoutos E E and Espinosa H D 2008 Nano Lett. 8 3668
[22] Ding W, Calabri L, Chen X, Kohlhaas K M and Ruoff R S 2006 Compos. Sci. Technol. 66 1112
[23] Craighead H 2007 Nature Nanotechnol. 2 18
[24] Gavan K B, van der Drift E W J M, Venstra W J, Zuiddam M R and van der Zant H S J 2009 J. Micromech. Microeng. 19 035003
[25] Guillon S, Saya D, Mazenq L, Perisanu S, Vincent P, Lazarus A, Thomas O and Nicu L 2011 Nanotechnology 22 245501
[26] Nazeer H, Woldering L A, Abelmann L, Nguyen M D, Rijnders G and Elwenspoek M C 2011 Microelectron. Eng. 88 2345
[27] Ilic B, Krylov S and Craighead H G 2010 J. Appl. Phys. 108 044317
[28] Poelma R H, Sadeghian H, Noijen S P M, Zaal J J M and Zhang G Q 2011 J. Micromech. Microeng. 21 065003
[29] Jenkins N E, DeFlores L P, Allen J, Ng T N, Garner S R, Kuehn S, Dawlaty J M and Marohn J A 2004 J. Vac. Sci. Technol. B 22 909
[30] Chen J, Qin M and Huang Q A 2011 Chin. Phys. B 20 097101
[31] Park H 2008 J. Appl. Phys. 103 123504
[32] Zhang J H, Li M, Gu F and Liu Q Q 2012 Chin. Phys. B 21 016203
[1] Mechanical enhancement and weakening in Mo6S6 nanowire by twisting
Ke Xu(徐克), Yanwen Lin(林演文), Qiao Shi(石桥), Yuequn Fu(付越群), Yi Yang(杨毅),Zhisen Zhang(张志森), and Jianyang Wu(吴建洋). Chin. Phys. B, 2023, 32(4): 046204.
[2] Effect of spatial heterogeneity on level of rejuvenation in Ni80P20 metallic glass
Tzu-Chia Chen, Mahyuddin KM Nasution, Abdullah Hasan Jabbar, Sarah Jawad Shoja, Waluyo Adi Siswanto, Sigiet Haryo Pranoto, Dmitry Bokov, Rustem Magizov, Yasser Fakri Mustafa, A. Surendar, Rustem Zalilov, Alexandr Sviderskiy, Alla Vorobeva, Dmitry Vorobyev, and Ahmed Alkhayyat. Chin. Phys. B, 2022, 31(9): 096401.
[3] Single-polarization single-mode hollow-core negative curvature fiber with nested U-type cladding elements
Qi-Wei Wang(王启伟), Shi Qiu(邱石), Jin-Hui Yuan(苑金辉), Gui-Yao Zhou(周桂耀), Chang-Ming Xia(夏长明), Yu-Wei Qu(屈玉玮), Xian Zhou(周娴), Bin-Bin Yan(颜玢玢), Qiang Wu(吴强), Kui-Ru Wang(王葵如), Xin-Zhu Sang(桑新柱), and Chong-Xiu Yu(余重秀). Chin. Phys. B, 2022, 31(6): 064213.
[4] Molecular dynamics simulations of mechanical properties of epoxy-amine: Cross-linker type and degree of conversion effects
Yongqin Zhang(张永钦), Hua Yang(杨华), Yaguang Sun(孙亚光),Xiangrui Zheng(郑香蕊), and Yafang Guo(郭雅芳). Chin. Phys. B, 2022, 31(6): 064209.
[5] Acoustic radiation force on a rigid cylinder near rigid corner boundaries exerted by a Gaussian beam field
Qin Chang(常钦), Yuchen Zang(臧雨宸), Weijun Lin(林伟军), Chang Su(苏畅), and Pengfei Wu(吴鹏飞). Chin. Phys. B, 2022, 31(4): 044302.
[6] First-principles study of two new boron nitride structures: C12-BN and O16-BN
Hao Wang(王皓), Yaru Yin(殷亚茹), Xiong Yang(杨雄), Yanrui Guo(郭艳蕊), Ying Zhang(张颖), Huiyu Yan(严慧羽), Ying Wang(王莹), and Ping Huai(怀平). Chin. Phys. B, 2022, 31(2): 026102.
[7] Spin and spin-orbit coupling effects in nickel-based superalloys: A first-principles study on Ni3Al doped with Ta/W/Re
Liping Liu(刘立平), Jin Cao(曹晋), Wei Guo(郭伟), and Chongyu Wang(王崇愚). Chin. Phys. B, 2022, 31(1): 016105.
[8] Structural, mechanical, electronic properties, and Debye temperature of quaternary carbide Ti3NiAl2C ceramics under high pressure: A first-principles study
Diyou Jiang(姜迪友), Wenbo Xiao(肖文波), and Sanqiu Liu(刘三秋). Chin. Phys. B, 2021, 30(3): 036202.
[9] Numerical investigation on threading dislocation bending with InAs/GaAs quantum dots
Guo-Feng Wu(武国峰), Jun Wang(王俊), Wei-Rong Chen(陈维荣), Li-Na Zhu(祝丽娜), Yuan-Qing Yang(杨苑青), Jia-Chen Li(李家琛), Chun-Yang Xiao(肖春阳), Yong-Qing Huang(黄永清), Xiao-Min Ren(任晓敏), Hai-Ming Ji(季海铭), and Shuai Luo(罗帅). Chin. Phys. B, 2021, 30(11): 110201.
[10] Numerical simulation of acoustic field under mechanical stirring
Jin-He Liu(刘金河), Zhuang-Zhi Shen(沈壮志), and Shu-Yu Lin(林书玉). Chin. Phys. B, 2021, 30(10): 104302.
[11] Structure prediction, electronic, and mechanical properties of alkali metal MB12 ( M= Be, Mg, Ca, Sr) from first principles
Chun-Ying Pu(濮春英), Rong-Mei Yu(于荣梅), Ting Wang(王婷), Zhen-Yan X\"ue(薛振彦), Yong-Sheng Zhu(朱永胜), and Da-Wei Zhou(周大伟). Chin. Phys. B, 2021, 30(1): 017102.
[12] Plasmonic characteristics of suspended graphene-coated wedge porous silicon nanowires with Ag partition
Xu Wang(王旭), Jue Wang(王珏), Tao Ma(马涛), Heng Liu(刘恒), and Fang Wang(王芳). Chin. Phys. B, 2021, 30(1): 014207.
[13] Structural, mechanical, and electronic properties of Zr-Te compounds from first-principles calculations
Peng Wang(王鹏), Ning-Chao Zhang(张宁超), Cheng-Lu Jiang(蒋城露), Fu-Sheng Liu(刘福生), Zheng-Tang Liu(刘正堂), Qi-Jun Liu(刘其军). Chin. Phys. B, 2020, 29(7): 076201.
[14] Stress and strain analysis of Si-based Ⅲ-V template fabricated by ion-slicing
Shuyan Zhao(赵舒燕), Yuxin Song(宋禹忻), Hao Liang(梁好), Tingting Jin(金婷婷), Jiajie Lin(林家杰), Li Yue(岳丽), Tiangui You(游天桂), Chang Wang(王长), Xin Ou(欧欣), Shumin Wang(王庶民). Chin. Phys. B, 2020, 29(7): 077303.
[15] Effect of Sn and Al additions on the microstructure and mechanical properties of amorphous Ti-Cu-Zr-Ni alloys
Fu-Chuan Chen(陈福川), Fu-Ping Dai(代富平), Xiao-Yi Yang(杨霄熠), Ying Ruan(阮莹), Bing-Bo Wei(魏炳波). Chin. Phys. B, 2020, 29(6): 066401.
No Suggested Reading articles found!