Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(7): 070502    DOI: 10.1088/1674-1056/21/7/070502
GENERAL Prev   Next  

Properties of train traffic flow in moving block system

Wang Min(王敏), Zeng Jun-Wei(曾俊伟), Qian Yong-Sheng(钱勇生), Li Wen-Jun(李文俊), Yang Fang(杨芳), and Jia Xin-Xin(贾欣欣)
School of Traffic and Transportation, Lanzhou Jiaotong University, Lanzhou 730070, China
Abstract  The development direction of railway is to improve the capacity and the service quality, where the service quality includes safety, schedule, high speed, and comfort. In light of the existing cellular automaton models, in this paper, we develop a model to analyze the mixed running processes of trains with maximal speeds of 500 km/h and 350 km/h respectively in the moving block system. In the proposed model, we establish some sound rules to control the running process of train, where the rules include the departure rules in the intermediate stations, the overtaking rules, and the conditions of speed limitation for train stopping at a station or passing through a station. With the consideration of the mixed ratio and the distance between two adjacent stations, the properties of the train traffic flow (including capacity and average speed) are simulated. The numerical results show that the interactions among different trains will affect the capacity, and a proper increasing of the spatial distance between two adjacent stations can enhance the capacity and the average speed under the moving block.
Keywords:  train traffic flow      moving block      cellular automaton model      simulation  
Received:  26 September 2011      Revised:  23 November 2011      Accepted manuscript online: 
PACS:  05.40.-a (Fluctuation phenomena, random processes, noise, and Brownian motion)  
  89.40.Bb (Land transportation)  
  05.60.-k (Transport processes)  
Fund: Project supported by the State Social Science Fund Project, China (Grant No. 11CJY067) and the Natural Science Foundation of Gansu Province, China (Grant No. 1107RJYA070).
Corresponding Authors:  Qian Yong-Sheng     E-mail:  qianyongsheng@mail.lzjtu.cn

Cite this article: 

Wang Min(王敏), Zeng Jun-Wei(曾俊伟), Qian Yong-Sheng(钱勇生), Li Wen-Jun(李文俊), Yang Fang(杨芳), and Jia Xin-Xin(贾欣欣) Properties of train traffic flow in moving block system 2012 Chin. Phys. B 21 070502

[1] Wang Z J 2008 China High Technology Enterprises 14 20 (in Chinese)
[2] Wang J J 2011 Science & Technology Information 18 49 (in Chinese)
[3] Hu X H, Zhou X S and Dang J W 2005 Computer Engi- neering and Design 27 70 (in Chinese)
[4] Fu Y P 2009 Research on Modeling and Simulations of Train Tracking Operation and Energy Saving Optimiza- tion (Ph. D thesis) (Beijing: Beijing Jiaotong University) (in Chinese)
[5] Meng L Y, Yang Z X, Li H Y and An J 2010 China Rail- way Science 31 90 (in Chinese)
[6] Chen J H, Zhang X C and Xu B 2011 Journal of System Simulation 23 770 (in Chinese)
[7] Yang W, Li H Y and Wang J L 2011 Railway Computer Application 20 7 (in Chinese)
[8] Xu H, Ma J J and Long J C 2007 Journal of the China Railway Society 29 1 (in Chinese)
[9] Mei C Q, Huang H J and Tang T Q 2009 Acta Phys. Sin. 58 3014 (in Chinese)
[10] Sheng P, Zhao S L, Wang J F and Zuo H 2010 Acta Phys. Sin. 59 3831(in Chinese)
[11] Zheng L, Ma S F and Jia N 2010 Acta Phys. Sin. 59 4490 (in Chinese)
[12] Li Q L, Sun X Y,Wang B H and Liu M R 2010 Acta Phys. Sin. 59 5996 (in Chinese)
[13] Ding J X, Huang H J and Tang T Q 2009 Acta Phys. Sin. 58 7591(in Chinese)
[14] Wen J, Tian H H, Kan S J and Xue Yu 2010 Acta Phys. Sin. 59 7693 (in Chinese)
[15] Qian Y S, Zeng J W, Du J W, Liu Y F, Wang M and Wei J 2011 Acta Phys. Sin. 60 060505 (in Chinese)
[16] Nagel K and Schreckenberg M 1992 J. Phys. I 2 2221
[17] Biham O, Middleton A A and Levine D A 1992 Phys. Rev. A 46 6124
[18] Hardy J, Pomeau Y and De Pazzis O 1976 Phys. Rev. A 13 1976
[19] Li X B, Wu Q S and Jiang R 2001 Phys. Rev. E 64 6128
[20] Knospe W, Santen L, Schadschneider A and Schreckenberg M 2000 Phys. A 33 477
[21] Li K P, Gao Z Y and Ning B 2005 Phys. C 16 921
[22] Ning B, Li K P and Gao Z Y 2005 Phys. C 16 1793
[23] Zhou H L, Gao Z Y and Li K P 2006 Commum. Comput. Phys. 1 494
[24] Zhou H L, Gao Z Y and Li K P 2006 Acta Phys. Sin. 55 1706 (in Chinese)
[25] Xun J, Nin B and Li K P 2007 Acta Phys. Sin. 56 5158 (in Chinese)
[26] Wang H L and Qian Y S 2008 Railway Transport and Economy 30 82 (in Chinese)
[27] Hua W and Liu J 2006 Chin. Phys. 15 687
[28] Li K P, Gao Z Y and Mao B H 2007 Chin. Phys. 16 1
[29] Li F, Gao Z Y and Li K P 2007 Acta Phys. Sin. 56 3158 (in Chinese)
[30] Fu Y P, Gao Z Y and Li K P 2007 Acta Phys. Sin. 56 5165 (in Chinese)
[1] Abnormal magnetic behavior of prussian blue analogs modified with multi-walled carbon nanotubes
Jia-Jun Mo(莫家俊), Pu-Yue Xia(夏溥越), Ji-Yu Shen(沈纪宇), Hai-Wen Chen(陈海文), Ze-Yi Lu(陆泽一), Shi-Yu Xu(徐诗语), Qing-Hang Zhang(张庆航), Yan-Fang Xia(夏艳芳), Min Liu(刘敏). Chin. Phys. B, 2023, 32(4): 047503.
[2] Micromagnetic study of magnetization reversal in inhomogeneous permanent magnets
Zhi Yang(杨质), Yuanyuan Chen(陈源源), Weiqiang Liu(刘卫强), Yuqing Li(李玉卿), Liying Cong(丛利颖), Qiong Wu(吴琼), Hongguo Zhang(张红国), Qingmei Lu(路清梅), Dongtao Zhang(张东涛), and Ming Yue(岳明). Chin. Phys. B, 2023, 32(4): 047504.
[3] Intense low-noise terahertz generation by relativistic laser irradiating near-critical-density plasma
Shijie Zhang(张世杰), Weimin Zhou(周维民), Yan Yin(银燕), Debin Zou(邹德滨), Na Zhao(赵娜), Duan Xie(谢端), and Hongbin Zhuo(卓红斌). Chin. Phys. B, 2023, 32(3): 035201.
[4] Quantitative measurement of the charge carrier concentration using dielectric force microscopy
Junqi Lai(赖君奇), Bowen Chen(陈博文), Zhiwei Xing(邢志伟), Xuefei Li(李雪飞), Shulong Lu(陆书龙), Qi Chen(陈琪), and Liwei Chen(陈立桅). Chin. Phys. B, 2023, 32(3): 037202.
[5] Coexisting lattice contractions and expansions with decreasing thicknesses of Cu (100) nano-films
Simin An(安思敏), Xingyu Gao(高兴誉), Xian Zhang(张弦), Xin Chen(陈欣), Jiawei Xian(咸家伟), Yu Liu(刘瑜), Bo Sun(孙博), Haifeng Liu(刘海风), and Haifeng Song(宋海峰). Chin. Phys. B, 2023, 32(3): 036804.
[6] Molecular dynamics study of interactions between edge dislocation and irradiation-induced defects in Fe–10Ni–20Cr alloy
Tao-Wen Xiong(熊涛文), Xiao-Ping Chen(陈小平), Ye-Ping Lin(林也平), Xin-Fu He(贺新福), Wen Yang(杨文), Wang-Yu Hu(胡望宇), Fei Gao(高飞), and Hui-Qiu Deng(邓辉球). Chin. Phys. B, 2023, 32(2): 020206.
[7] Gyrokinetic simulation of low-n Alfvénic modes in tokamak HL-2A plasmas
Wen-Hao Lin(林文浩), Ji-Quan Li(李继全), J Garcia, and S Mazzi. Chin. Phys. B, 2023, 32(2): 025202.
[8] Different roles of surfaces' interaction on lattice mismatched/matched surfaces in facilitating ice nucleation
Xuanhao Fu(傅宣豪) and Xin Zhou(周昕). Chin. Phys. B, 2023, 32(2): 028202.
[9] Experiment and simulation on degradation and burnout mechanisms of SiC MOSFET under heavy ion irradiation
Hong Zhang(张鸿), Hongxia Guo(郭红霞), Zhifeng Lei(雷志锋), Chao Peng(彭超), Zhangang Zhang(张战刚), Ziwen Chen(陈资文), Changhao Sun(孙常皓), Yujuan He(何玉娟), Fengqi Zhang(张凤祁), Xiaoyu Pan(潘霄宇), Xiangli Zhong(钟向丽), and Xiaoping Ouyang(欧阳晓平). Chin. Phys. B, 2023, 32(2): 028504.
[10] Micro-mechanism study of the effect of Cd-free buffer layers ZnXO (X=Mg/Sn) on the performance of flexible Cu2ZnSn(S, Se)4 solar cell
Caixia Zhang(张彩霞), Yaling Li(李雅玲), Beibei Lin(林蓓蓓), Jianlong Tang(唐建龙), Quanzhen Sun(孙全震), Weihao Xie(谢暐昊), Hui Deng(邓辉), Qiao Zheng(郑巧), and Shuying Cheng(程树英). Chin. Phys. B, 2023, 32(2): 028801.
[11] Effect of a static pedestrian as an exit obstacle on evacuation
Yang-Hui Hu(胡杨慧), Yu-Bo Bi(毕钰帛), Jun Zhang(张俊), Li-Ping Lian(练丽萍), Wei-Guo Song(宋卫国), and Wei Gao(高伟). Chin. Phys. B, 2023, 32(1): 018901.
[12] Variational quantum simulation of thermal statistical states on a superconducting quantum processer
Xue-Yi Guo(郭学仪), Shang-Shu Li(李尚书), Xiao Xiao(效骁), Zhong-Cheng Xiang(相忠诚), Zi-Yong Ge(葛自勇), He-Kang Li(李贺康), Peng-Tao Song(宋鹏涛), Yi Peng(彭益), Zhan Wang(王战), Kai Xu(许凯), Pan Zhang(张潘), Lei Wang(王磊), Dong-Ning Zheng(郑东宁), and Heng Fan(范桁). Chin. Phys. B, 2023, 32(1): 010307.
[13] Skyrmion-based logic gates controlled by electric currents in synthetic antiferromagnet
Linlin Li(李林霖), Jia Luo(罗佳), Jing Xia(夏静), Yan Zhou(周艳), Xiaoxi Liu(刘小晰), and Guoping Zhao(赵国平). Chin. Phys. B, 2023, 32(1): 017506.
[14] Time-resolved K-shell x-ray spectra of nanosecond laser-produced titanium tracer in gold plasmas
Zhencen He(何贞岑), Jiyan Zhang(张继彦), Jiamin Yang(杨家敏), Bing Yan(闫冰), and Zhimin Hu(胡智民). Chin. Phys. B, 2023, 32(1): 015202.
[15] Adsorption dynamics of double-stranded DNA on a graphene oxide surface with both large unoxidized and oxidized regions
Mengjiao Wu(吴梦娇), Huishu Ma(马慧姝), Haiping Fang(方海平), Li Yang(阳丽), and Xiaoling Lei(雷晓玲). Chin. Phys. B, 2023, 32(1): 018701.
No Suggested Reading articles found!