Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(12): 120306    DOI: 10.1088/1674-1056/21/12/120306
GENERAL Prev   Next  

Performance of superconducting single photon detector with nano-antenna

Zhang Chao (张弨), Jiao Rong-Zhen (焦荣珍)
School of Science, Beijing University of Post and Telecommunications, Beijing 100876, China
Abstract  The performance of single-photon detectors can be enhanced by using nano-antenna. The characteristics of the superconducting nano-wire single-photon detector with cavity plus anti-reflect coating and specially designed nano-antenna is analysed. The photon collection efficiency of the detector is enhanced without damaging the detector's speed, thus getting rid of the dilemma of speed and efficiency. The characteristics of nano-antenna are discussed, such as the position and the effect of the active area, and the best result is given. The photon collection efficiency is increased by 92 times compared with that of existing detectors.
Keywords:  quantum communication      superconducting single photon detector      nano-antenna  
Received:  20 March 2012      Revised:  23 May 2012      Accepted manuscript online: 
PACS:  03.67.Dd (Quantum cryptography and communication security)  
  03.67.Hk (Quantum communication)  
Fund: Project supported by the National Basic Research Program of China (Grant No. 2010CB923202).
Corresponding Authors:  Jiao Rong-Zhen     E-mail:  jiaorongzhen@126.com

Cite this article: 

Zhang Chao (张弨), Jiao Rong-Zhen (焦荣珍) Performance of superconducting single photon detector with nano-antenna 2012 Chin. Phys. B 21 120306

[1] Eisaman M D, Fan J, Migdall A and Polyakov S V 2011 Rev. Sci. Instrum. 82 071101
[2] Bennett C and Brassard G 1984 Proceedings of IEEE International Conference on Computers, Systems, and Signal Processing, Bangalore, India, p. 175
[3] Hwang W Y 2003 Phys. Rev. Lett. 91 057901
[4] Deutsch D, Ekert A, Jozsa R, Macchiavello C, Popescu S and Sanpera A 1996 Phys. Rev. Lett. 77 2818
[5] Wang X B, Wang J J, Zhang G F, Xiao L T and Jia S T 2011 Chin. Phys. B 20 064204
[6] Liu Y, Wu Q L, Han Z F, Dai Y M and Guo G C 2010 Chin. Phys. B 19 080308
[7] Takesue H, Nam S W, Zhang Q, Hadfield R H, Honjo T, Tamaki K and Yamamoto Y 2007 Nat. Photon. 1 343
[8] Kerman A J, Dauler E A, Keicher W E, Yang J K W, Berggren K K, Gol'tsman G and Voronov B 2006 Appl. Phys. Lett. 88 111116
[9] Rosfjord K M, Yang J K W, Dauler E A, Kerman A J, Anant V, Voronov B, Gol'tsman G N and Berggren K K 2006 Opt. Express 14 527
[10] Esteban R, Teperik T V and Greffet J J 2010 Phys. Rev. Lett. 104 026802
[11] Yang J K W, Kerman A J, Dauler E A, Anant V, Rosfjord K M and Berggren K K 2007 IEEE Trans. Appl. Superconductivity 17 581
[12] Hu X L, Dauler E A, Molnar R J and Berggren K K 2011 Opt. Express 19 17
[13] Wang D, Yang T and Crozier K B 2010 Opt. Express 18 10388
[14] Wang D X, Yang T and Crozier K B 2011 Opt. Express 19 2148
[1] Purification in entanglement distribution with deep quantum neural network
Jin Xu(徐瑾), Xiaoguang Chen(陈晓光), Rong Zhang(张蓉), and Hanwei Xiao(肖晗微). Chin. Phys. B, 2022, 31(8): 080304.
[2] Self-error-rejecting multipartite entanglement purification for electron systems assisted by quantum-dot spins in optical microcavities
Yong-Ting Liu(刘永婷), Yi-Ming Wu(吴一鸣), and Fang-Fang Du(杜芳芳). Chin. Phys. B, 2022, 31(5): 050303.
[3] Channel parameters-independent multi-hop nondestructive teleportation
Hua-Yang Li(李华阳), Yu-Zhen Wei(魏玉震), Yi Ding(丁祎), and Min Jiang(姜敏). Chin. Phys. B, 2022, 31(2): 020302.
[4] Analysis of atmospheric effects on the continuous variable quantum key distribution
Tao Liu(刘涛), Shuo Zhao(赵硕), Ivan B. Djordjevic, Shuyu Liu(刘舒宇), Sijia Wang(王思佳),Tong Wu(吴彤), Bin Li(李斌), Pingping Wang(王平平), and Rongxiang Zhang(张荣香). Chin. Phys. B, 2022, 31(11): 110303.
[5] Design and optimization of a nano-antenna hybrid structure for solar energy harvesting application
Mohammad Javad Rabienejhad, Mahdi Davoudi-Darareh, and Azardokht Mazaheri. Chin. Phys. B, 2021, 30(9): 098503.
[6] Improving the purity of heralded single-photon sources through spontaneous parametric down-conversion process
Jing Wang(王静), Chun-Hui Zhang(张春辉), Jing-Yang Liu(刘靖阳), Xue-Rui Qian(钱雪瑞), Jian Li(李剑), and Qin Wang(王琴). Chin. Phys. B, 2021, 30(7): 070304.
[7] Practical decoy-state BB84 quantum key distribution with quantum memory
Xian-Ke Li(李咸柯), Xiao-Qian Song(宋小谦), Qi-Wei Guo(郭其伟), Xing-Yu Zhou(周星宇), and Qin Wang(王琴). Chin. Phys. B, 2021, 30(6): 060305.
[8] Design and optimization of nano-antenna for thermal ablation of liver cancer cells
Mohammad Javad Rabienejhad, Azardokht Mazaheri, and Mahdi Davoudi-Darareh. Chin. Phys. B, 2021, 30(4): 048401.
[9] Hierarchical simultaneous entanglement swapping for multi-hop quantum communication based on multi-particle entangled states
Guang Yang(杨光, Lei Xing(邢磊), Min Nie(聂敏), Yuan-Hua Liu(刘原华), and Mei-Ling Zhang(张美玲). Chin. Phys. B, 2021, 30(3): 030301.
[10] Deterministic nondestructive state analysis for polarization-spatial-time-bin hyperentanglement with cross-Kerr nonlinearity
Hui-Rong Zhang(张辉荣), Peng Wang(王鹏), Chang-Qi Yu(于长琦), and Bao-Cang Ren(任宝藏). Chin. Phys. B, 2021, 30(3): 030304.
[11] Photonic-plasmonic hybrid microcavities: Physics and applications
Hongyu Zhang(张红钰), Wen Zhao(赵闻), Yaotian Liu(刘耀天), Jiali Chen(陈佳丽), Xinyue Wang(王欣月), and Cuicui Lu(路翠翠). Chin. Phys. B, 2021, 30(11): 117801.
[12] New semi-quantum key agreement protocol based on high-dimensional single-particle states
Huan-Huan Li(李欢欢), Li-Hua Gong(龚黎华), and Nan-Run Zhou(周南润). Chin. Phys. B, 2020, 29(11): 110304.
[13] Heralded entanglement purification protocol using high-fidelity parity-check gate based on nitrogen-vacancy center in optical cavity
Lu-Cong Lu(陆路聪), Guan-Yu Wang(王冠玉), Bao-Cang Ren(任宝藏), Mei Zhang(章梅), Fu-Guo Deng(邓富国). Chin. Phys. B, 2020, 29(1): 010305.
[14] Deterministic hierarchical joint remote state preparation with six-particle partially entangled state
Na Chen(陈娜), Bin Yan(颜斌), Geng Chen(陈赓), Man-Jun Zhang(张曼君), Chang-Xing Pei(裴昌幸). Chin. Phys. B, 2018, 27(9): 090304.
[15] Quantum photonic network on chip
Qun-Yong Zhang(张群永), Ping Xu(徐平), Shi-Ning Zhu(祝世宁). Chin. Phys. B, 2018, 27(5): 054207.
No Suggested Reading articles found!