Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(10): 104206    DOI: 10.1088/1674-1056/21/10/104206
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Rotational motions of optically trapped microscopic particles by a vortex femtosecond laser

Ran Ling-Ling (冉玲苓)a b, Guo Zhong-Yi (郭忠义)b c, Qu Shi-Liang (曲士良)b
a College of Electronic Engineering, Heilongjiang University, Harbin 150080, China;
b Department of Optoelectronic Science, Harbin Institute of Technology at Weihai, Weihai 264209, China;
c School of Computer and Information, Hefei University of Technology, Hefei 230009, China
Abstract  The rotational motions of the optically trapped microscopic particles by the vortex femtosecond laser beam are investigated in this paper. Black particles can be trapped and rotated by a vortex femtosecond laser beam very effectively because the vortex beam carries orbital angular momentum due to the helical wave-front structure in assoication with the central phase singularity. Trapped black particles rotate in the vortex beam due to the absorption of the angular momentum transferred from the vortex beam. The rotating directions of the trapped particles can be modulated by reversing the topological charge of the optical vortex in the vortex femtosecond beam. And the rotating speeds of the trapped microscopic particles greatly depend on the topological charges of the vortex tweezer and the used pulse energies.
Keywords:  vortex femtosecond laser      rotation      particles  
Received:  07 February 2012      Revised:  11 April 2012      Accepted manuscript online: 
PACS:  42.50.Wk (Mechanical effects of light on material media, microstructures and particles)  
  42.40.Jv (Computer-generated holograms)  
  42.40My  
Fund: Project supported by the National Natural Science Foundation for Post-Doctoral Scientists of China (Grant No. 2012M511002), the National Natural Science Foundation of China (Grant Nos. 10904027 and 61108018), and the Science and Technology Programs of Heilongjiang Educational Committee, China (Grant No. 12511425).
Corresponding Authors:  Ran Ling-Ling, Qu Shi-Liang     E-mail:  ranlingling221@126.com; slqu1@yahoo.com.cn

Cite this article: 

Ran Ling-Ling (冉玲苓), Guo Zhong-Yi (郭忠义), Qu Shi-Liang (曲士良) Rotational motions of optically trapped microscopic particles by a vortex femtosecond laser 2012 Chin. Phys. B 21 104206

[1] Ashkin A, Dziedzic J M, Bjorkholm J E and Chu S 1986 Opt. Lett. 11 288
[2] Ashkin A 1992 Biophys. J. 61 569
[3] Ashkin A, Dziedzic J M and Yamane T 1987 Nature 330 769
[4] Li X C and Sun X D 2010 Chin. Phys. B 19 119401
[5] Lou L R, Xu S H and Li Y M 2006 Chin. Phys. 15 1391
[6] Little H, Brown C, Garcés-Chávez V, Sibbett W and Dholakia K 2004 Opt. Express 12 2560
[7] Gong J X, Wu Z J, Zhao X M, Wang C L and Xing Q R 2009 Symposium on Photonics and Optoelectronics, August 14-16, 2009, Wuhan, China
[8] Hu X, Song J, Zhou Q, Yang L, Wang X, Zhu C and Qiu J R 2008 Chin. Opt. Lett. 6 388
[9] Beth R 1936 Phys. Rev. 50 115
[10] He H, Friese M, Heckenberg N and Rubinsztein-Dunlop H 1995 Phys. Rev. Lett. 75 826
[11] Friese M, Enger J, Rubinsztein-Dunlop H and Heckenberg N 1996 Phys. Rev. A 54 1593
[12] Simpson N, Dholakia K, Allen L and Padgett M 1997 Opt. Lett. 22 52
[13] Friese M, Rubinsztein-Dunlop H, Gold J, Hag-berg P and Hanstorp D 2001 Appl. Phys. Lett. 78 547
[14] Ran L L and Qu S L 2009 Curr. Appl. Phys. 91 210
[15] Guo Z Y, Qu S L and Liu S T 2007 Opt. Commun. 273 286
[16] Kogelnik H 1969 Bell Syst. Tech. J. 48 2909
[1] Resistance law of a rod penetrating a multilayer granular raft
Zonglin Li(李宗霖), Qiang Tian(田强), and Haiyan Hu(胡海岩). Chin. Phys. B, 2023, 32(3): 034501.
[2] Reconstruction and functionalization of aerogels by controlling mesoscopic nucleation to greatly enhance macroscopic performance
Chen-Lu Jiao(焦晨璐), Guang-Wei Shao(邵光伟), Yu-Yue Chen(陈宇岳), and Xiang-Yang Liu(刘向阳). Chin. Phys. B, 2023, 32(3): 038103.
[3] A band-pass frequency selective surface with polarization rotation
Bao-Qin Lin(林宝勤), Wen-Zhun Huang(黄文准), Jian-Xin Guo(郭建新), Zhe Liu(刘哲), Yan-Wen Wang(王衍文), and Hong-Jun Ye(叶红军). Chin. Phys. B, 2023, 32(2): 024204.
[4] Two-dimensional Sb cluster superlattice on Si substrate fabricated by a two-step method
Runxiao Zhang(张润潇), Zi Liu(刘姿), Xin Hu(胡昕), Kun Xie(谢鹍), Xinyue Li(李新月), Yumin Xia(夏玉敏), and Shengyong Qin(秦胜勇). Chin. Phys. B, 2022, 31(8): 086801.
[5] Laser fragmentation in liquid synthesis of novel palladium-sulfur compound nanoparticles as efficient electrocatalysts for hydrogen evolution reaction
Guo-Shuai Fu(付国帅), Hong-Zhi Gao(高宏志), Guo-Wei Yang(杨国伟), Peng Yu(于鹏), and Pu Liu(刘璞). Chin. Phys. B, 2022, 31(7): 077901.
[6] Up/down-conversion luminescence of monoclinic Gd2O3:Er3+ nanoparticles prepared by laser ablation in liquid
Hua-Wei Deng(邓华威) and Di-Hu Chen(陈弟虎). Chin. Phys. B, 2022, 31(7): 078701.
[7] Onion-structured transition metal dichalcogenide nanoparticles by laser fabrication in liquids and atmospheres
Le Zhou(周乐), Hongwen Zhang(张洪文), Qian Zhao(赵倩), and Weiping Cai(蔡伟平). Chin. Phys. B, 2022, 31(7): 076106.
[8] SERS activity of carbon nanotubes modified by silver nanoparticles with different particle sizes
Xiao-Lei Zhang(张晓蕾), Jie Zhang(张洁), Yuan Luo(罗元), and Jia Ran(冉佳). Chin. Phys. B, 2022, 31(7): 077401.
[9] Local sum uncertainty relations for angular momentum operators of bipartite permutation symmetric systems
I Reena, H S Karthik, J Prabhu Tej, Sudha, A R Usha Devi, and A K Rajagopal. Chin. Phys. B, 2022, 31(6): 060301.
[10] Efficient quantum private comparison protocol utilizing single photons and rotational encryption
Tian-Yi Kou(寇天翊), Bi-Chen Che(车碧琛), Zhao Dou(窦钊), Xiu-Bo Chen(陈秀波), Yu-Ping Lai(赖裕平), and Jian Li(李剑). Chin. Phys. B, 2022, 31(6): 060307.
[11] Influence of various shapes of nanoparticles on unsteady stagnation-point flow of Cu-H2O nanofluid on a flat surface in a porous medium: A stability analysis
Astick Banerjee, Krishnendu Bhattacharyya, Sanat Kumar Mahato, and Ali J. Chamkha. Chin. Phys. B, 2022, 31(4): 044701.
[12] Rotational manipulation of massive particles in a 2D acoustofluidic chamber constituted by multiple nonlinear vibration sources
Qiang Tang(汤强), Pengzhan Liu(刘鹏展), and Shuai Tang(唐帅). Chin. Phys. B, 2022, 31(4): 044301.
[13] Improving the performance of a GaAs nanowire photodetector using surface plasmon polaritons
Xiaotian Zhu(朱笑天), Bingheng Meng(孟兵恒), Dengkui Wang(王登魁), Xue Chen(陈雪), Lei Liao(廖蕾), Mingming Jiang(姜明明), and Zhipeng Wei(魏志鹏). Chin. Phys. B, 2022, 31(4): 047801.
[14] Self-adaptive behavior of nunchakus-like tracer induced by active Brownian particles
Yi-Qi Xia(夏益祺), Guo-Qiang Feng(冯国强), and Zhuang-Lin Shen(谌庄琳). Chin. Phys. B, 2022, 31(4): 040204.
[15] Transmembrane transport of multicomponent liposome-nanoparticles into giant vesicles
Hui-Fang Wang(王慧芳), Chun-Rong Li(李春蓉), Min-Na Sun(孙敏娜), Jun-Xing Pan(潘俊星), and Jin-Jun Zhang(张进军). Chin. Phys. B, 2022, 31(4): 048703.
No Suggested Reading articles found!