Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(10): 104207    DOI: 10.1088/1674-1056/21/10/104207
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Modeling of resistance characteristics of a continuously-graded distributed Bragg reflector in a 980-nm vertical-cavity surface-emitting laser

Huang Meng (黄梦)a, Wu Jian (吴坚)a, Cui Huai-Yang (崔怀洋)a, Qian Jian-Qiang (钱建强)a, Ning Yong-Qiang (宁永强)b
a Department of Applied Physics, Beihang University and Key Laboratory of Micro-Nano Measurement-Manipulation and Physics (Ministry of Education), Beijing 100191, China;
b State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China
Abstract  The resistance characteristics of a continuously-graded distributed Bragg reflector (DBR) in a 980-nm vertical-cavity surface-emitting laser (VCSEL) are modeled in detail. The junction resistances between the layers of both the p- and n-DBR mirrors are analysed by combining the thermionic emission model and the finite difference method. In the meantime, the intrinsic resistance of the DBR material system is calculated to make a comparison with the junction resistance. The minimal values of series resistances of the graded p- and n-type DBR mirrors and the lateral temperature-dependent resistance variation are calculated and discussed. The result indicates the potential to optimize the design of the DBR reflectors of the 980-nm VCSELs.
Keywords:  distributed Bragg reflector (DBR)      resistance characteristics      vertical-cavity surface-emitting lasers  
Received:  07 March 2012      Revised:  18 April 2012      Accepted manuscript online: 
PACS:  42.55.Px (Semiconductor lasers; laser diodes)  
  73.40.Kp (III-V semiconductor-to-semiconductor contacts, p-n junctions, and heterojunctions)  
  73.40.Cg (Contact resistance, contact potential)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 10974012).
Corresponding Authors:  Wu Jian     E-mail:  jwu2@buaa.edu.cn

Cite this article: 

Huang Meng (黄梦), Wu Jian (吴坚), Cui Huai-Yang (崔怀洋), Qian Jian-Qiang (钱建强), Ning Yong-Qiang (宁永强) Modeling of resistance characteristics of a continuously-graded distributed Bragg reflector in a 980-nm vertical-cavity surface-emitting laser 2012 Chin. Phys. B 21 104207

[1] Chuang H H, Biard J R, Guenter J, Johnson R, Evans G A and Butler J K 2007 IEEE J. Sel. Top. Quantum Electron. 43 1028
[2] Zhou P, Cheng J, Schaus C F, Sun S Z, Zheng K, Armour E, Hains C, Hsin W, Myers D R and Vawter G A 1991 IEEE Photon. Technol. Lett. 3 591
[3] MacDougal, M H, Geske J, Lin C K, Bond A E and Dapkus P D 1998 IEEE Photon. Technol. Lett. 10 9
[4] Tai K, Yang L, Wang Y H, Wynn J D and Cho A Y 1990 Appl. Phys. Lett. 56 2496
[5] Nabiev R F, Chang H and C J 1995 IEEE Photon. Technol. Lett. 7 733
[6] Modh P, Galt S, Gustavsson J, Jacobsson S and Larsson A 2006 IEEE Photon. Technol. Lett. 18 100
[7] Kawakami T, Kadota Y, Kohama Y and Tadokoro T 1992 IEEE Photon. Technol. Lett. 4 1325
[8] Lear K L and Chalmers S A 1993 IEEE Photon. Technol. Lett. 5 972
[9] Duan X F, Zhang C, Zhou B and Xu C M 2002 SPIE 4913 194
[10] Osinski M, Smagley V A, Min L, Smolyakov G A, Eliseev P G, Riely B P, Shen P H and Simonis G J 2003 IEEE J. Sel. Top. Quantum Electron 9 1422
[11] Casey H C Jr and Panish M B 1978 Heterostructure Lasers Part A: Fundamental Principles (New York: Academic Press)
[12] Anderson R J 1962 Solid State Electronics 5 341
[13] Kumar R C 1968 Solid State Electronics 11 543
[14] Achtenhagen M, Hardy A A and Kapon E 2006 IEEE J. Sel. Top. Quantum Electron. 42 891
[15] Tsai H M, Tang S F, Sua S T, Chen T C and Chiang C D 2007 SPIE 6484 64840I
[16] Osinski M and Nakwaski W 1991 JJAP 30 596
[17] Osinski M and Nakwaski W 1995 IEEE J. Sel. Top. Quantum Electron. 1 681
[18] Wu J 2006 Acta Phys. Sin. 55 5848 (in Chinese)
[1] Power-induced polarization switching and bistability characteristics in 1550-nm VCSELs subjected to orthogonal optical injection
Chen Jian-Jun (陈建军), Xia Guang-Qiong (夏光琼), Wu Zheng-Mao (吴正茂). Chin. Phys. B, 2015, 24(2): 024210.
[2] The improved output performance of a broad-area vertical-cavity surface-emitting laser with an optimized electrode diameter
Zhang Xing (张星), Ning Yong-Qiang (宁永强), Qin Li (秦莉), Tong Cun-Zhu (佟存柱), Liu Yun (刘云), Wang Li-Jun (王立军). Chin. Phys. B, 2013, 22(6): 064209.
[3] Power dissipation in oxide-confined 980-nm vertical-cavity surface-emitting lasers
Shi Guo-Zhu (史国柱), Guan Bao-Lu (关宝璐), Li Shuo (李硕), Wang Qiang (王强), Shen Guang-Di (沈光地). Chin. Phys. B, 2013, 22(1): 014206.
[4] Graded index profiles and loss-induced single-mode characteristics in vertical-cavity surface-emitting lasers with petal-shape holey structure
Liu An-Jin(刘安金), Qu Hong-Wei(渠红伟), Chen Wei(陈微), Jiang Bin(江斌), Zhou Wen-Jun(周文君), Xing Ming-Xin(邢名欣), and Zheng Wan-Hua(郑婉华) . Chin. Phys. B, 2011, 20(2): 024204.
[5] Micromechanical tunable vertical-cavity surface-emitting lasers
Guan Bao-Lu(关宝璐), Guo Xia(郭霞), Deng Jun(邓军), Qu Hong-Wei(渠红伟), Lian Peng(廉鹏), Dong Li-Min(董立敏), Chen Min(陈敏), and Shen Guang-Di(沈光地). Chin. Phys. B, 2006, 15(12): 2959-2962.
No Suggested Reading articles found!