Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(8): 084206    DOI: 10.1088/1674-1056/20/8/084206
CLASSICAL AREAS OF PHENOMENOLOGY Prev   Next  

Broadband water window supercontinuum generation with a ω+3ω/2 multicycle two-colour pulse

Du Hong-Chuan(杜洪川), Wang Xiao-Shan(王小山), and Hu Bi-Tao(胡碧涛)
School of Nuclear Science and Technology, Lanzhou University, Lanzhou 730000, China
Abstract  We propose a method to generate a high-efficiency broadband water window supercontinuum with a ω+3ω/2 multicycle two-colour pulse. Our results reveal that the /2 laser pulse can simultaneously modulate the acceleration step and the ionization step, which not only broadens the bandwidth but also enhances the yield of the generated supercontinuum. An ultra-broadband supercontinuum from 290 eV to 555 eV covering the whole water window is generated. Using this method, we expect that an isolated 62-as pulse with a minor pre-pulse can be directly obtained.
Keywords:  high-order harmonic      attosecond pulse      supercontinuum  
Received:  13 December 2010      Revised:  11 April 2011      Accepted manuscript online: 
PACS:  42.65.Ky (Frequency conversion; harmonic generation, including higher-order harmonic generation)  
  32.80.Rm (Multiphoton ionization and excitation to highly excited states)  
  42.65.Re (Ultrafast processes; optical pulse generation and pulse compression)  
Fund: Project supported by the Program for New Century Excellent Talents in University of China, the National Natural Science Foundation of China (Grant Nos. 10775062 and 10875054), and the Fundamental Research Funds for the Central Universities of China (Grant No. lzujbky-2010-k08).

Cite this article: 

Du Hong-Chuan(杜洪川), Wang Xiao-Shan(王小山), and Hu Bi-Tao(胡碧涛) Broadband water window supercontinuum generation with a ω+3ω/2 multicycle two-colour pulse 2011 Chin. Phys. B 20 084206

[1] Corkum P B and Krausz F 2007 Nature Phys. 3 381
[2] Paul P M, Toma E S, Breger P, Mullot G, Augé F, Balcou Ph, Muller H G and Agostini P 2001 Science 292 1689
[3] Uiberacker M, Uphues Th, Schultze M, Verhoef A J, Yakovlev V, Kling M F, Rauschenberger J, Kabachnik N M, Schr"oder H, Lezius M, Kompa K L, Muller H G, Vrakking M J J, Hendel S, Kleineberg U, Heinzmann U, Drescher M and Krausz F 2007 Nature 446 627
[4] Gilbertson S, Khan S D, Wu Y, Chini M and Chang Z 2010 Phys. Rev. Lett. 105 093902
[5] Takahashi E J, Lan P, Mücke O D, Nabekawa Y and Midorikawa K 2010 Phys. Rev. Lett. 104 233901
[6] Christov I P, Murnane M M and Kapteyn H C 1997 Phys. Rev. Lett. 78 1251
[7] Hentschel M, Kienberger R, Spielmann Ch, Reider G A, Milosevic N, Brabec T, Corkum P, Heinzmann U, Drescher M and Krausz F 2001 Nature 414 509
[8] Goulielmakis E, Schultze M, Hofstetter M, Yakovlev V S, Gagnon J, Uiberacker M, Aquila A L, Gullikson E M, Attwood D T, Kienberger R, Krausz F and Kleineberg U 2008 Science 320 1614
[9] Hong W, Lu P, Li Q and Zhang Q 2009 Opt. Lett. 34 2102
[10] Du H, Wang H and Hu B 2010 Phys. Rev. A 81 063813
[11] Wu J, Zhai Z and Liu X 2010 Chin. Phys. B 19 093201
[12] Ye X, Zhou X, Zhao S and Li P 2009 Acta Phys. Sin. 58 1579 (in Chinese)
[13] Corkum P B 1993 Phys. Rev. Lett. 71 1994
[14] Tate J, Auguste T, Muller H, Sali`eres P, Agostini P and DiMauro L F 2007 Phys. Rev. Lett. 98 013901
[15] Takahashi E J, Kanai T, Ishikawa K, Nabekawa Y and Midorikawa K 2008 Phys. Rev. Lett. 101 253901
[16] Doumy G, Wheeler J, Roedig C, Chirla R, Agostini P and DiMauro L F 2009 Phys. Rev. Lett. 102 093002
[17] Pfeifer T, Gallmann L, Abel M J, Nagel P M, Neumark D M and Leone S R 2006 Phys. Rev. Lett. 97 163901
[18] Lan P, Lu P, Cao W, Li Y and Wang X 2007 Phys. Rev. A 76 011402(R)
[19] Zhang Q, Lu P, Lan P, Hong W and Yang Z 2008 Opt. Express 16 9795
[20] Zou P, Zeng Z, Zheng Y, Lu Y, Liu P, Li R and Xu Z 2010 Phys. Rev. A 81 033428
[21] Chang Z 2004 Phys. Rev. A 70 043802
[22] Du H and Hu B 2010 Opt. Express 18 25958
[23] Ammosov M V, Delone N B and Krainov V P 1986 Sov. Phys. JETP 64 1191
[24] Javanainen J, Eberly J H and Su Q 1988 Phys. Rev. A 38 3430
[25] Watanabe N and Tsukada M 2000 Phys. Rev. E 62 2914
[26] Antoine P, Piraux B and Maquet A 1995 Phys. Rev. A 51 R1750
[1] Spectral shift of solid high-order harmonics from different channels in a combined laser field
Dong-Dong Cao(曹冬冬), Xue-Fei Pan(潘雪飞), Jun Zhang(张军), and Xue-Shen Liu(刘学深). Chin. Phys. B, 2023, 32(3): 034204.
[2] Phase-coherence dynamics of frequency-comb emission via high-order harmonic generation in few-cycle pulse trains
Chang-Tong Liang(梁畅通), Jing-Jing Zhang(张晶晶), and Peng-Cheng Li(李鹏程). Chin. Phys. B, 2023, 32(3): 033201.
[3] Effect of laser focus in two-color synthesized waveform on generation of soft x-ray high harmonics
Yanbo Chen(陈炎波), Baochang Li(李保昌), Xuhong Li(李胥红), Xiangyu Tang(唐翔宇), Chi Zhang(张弛), and Cheng Jin(金成). Chin. Phys. B, 2023, 32(1): 014203.
[4] High-order harmonic generation of the cyclo[18]carbon molecule irradiated by circularly polarized laser pulse
Shu-Shan Zhou(周书山), Yu-Jun Yang(杨玉军), Yang Yang(杨扬), Ming-Yue Suo(索明月), Dong-Yuan Li(李东垣), Yue Qiao(乔月), Hai-Ying Yuan(袁海颖), Wen-Di Lan(蓝文迪), and Mu-Hong Hu(胡木宏). Chin. Phys. B, 2023, 32(1): 013201.
[5] Probing subcycle spectral structures and dynamics of high-order harmonic generation in crystals
Long Lin(林龙), Tong-Gang Jia(贾铜钢), Zhi-Bin Wang(王志斌), and Peng-Cheng Li(李鹏程). Chin. Phys. B, 2022, 31(9): 093202.
[6] High power supercontinuum generation by dual-color femtosecond laser pulses in fused silica
Saba Zafar, Dong-Wei Li(李东伟), Acner Camino, Jun-Wei Chang(常峻巍), and Zuo-Qiang Hao(郝作强). Chin. Phys. B, 2022, 31(8): 084209.
[7] Tunable spectral shift of high-order harmonic generation in atoms using a sinusoidally phase-modulated pulse
Yue Qiao(乔月), Jun Wang(王俊), Yan Yan(闫妍), Simeng Song(宋思蒙), Zhou Chen(陈洲), Aihua Liu(刘爱华), Jigen Chen(陈基根), Fuming Guo(郭福明), and Yujun Yang(杨玉军). Chin. Phys. B, 2022, 31(6): 064214.
[8] Decoding the electron dynamics in high-order harmonic generation from asymmetric molecular ions in elliptically polarized laser fields
Cai-Ping Zhang(张彩萍) and Xiang-Yang Miao(苗向阳). Chin. Phys. B, 2022, 31(4): 043301.
[9] Enhancement of isolated attosecond pulse generation by using long gas medium
Yueying Liang(梁玥瑛), Xinkui He(贺新奎), Kun Zhao(赵昆), Hao Teng(滕浩), and Zhiyi Wei(魏志义). Chin. Phys. B, 2022, 31(4): 043302.
[10] Orientation and ellipticity dependence of high-order harmonic generation in nanowires
Fan Yang(杨帆), Yinghui Zheng(郑颖辉), Luyao Zhang(张路遥), Xiaochun Ge(葛晓春), and Zhinan Zeng(曾志男). Chin. Phys. B, 2022, 31(4): 044204.
[11] Generation of elliptical isolated attosecond pulse from oriented H2+ in a linearly polarized laser field
Yun-He Xing(邢云鹤), Jun Zhang(张军), Xiao-Xin Huo(霍晓鑫), Qing-Yun Xu(徐清芸), and Xue-Shen Liu(刘学深). Chin. Phys. B, 2022, 31(4): 043203.
[12] Multiple collisions in crystal high-order harmonic generation
Dong Tang(唐栋) and Xue-Bin Bian(卞学滨). Chin. Phys. B, 2022, 31(12): 123202.
[13] Amplitude and rotation of the ellipticity of harmonicsfrom a linearly polarized laser field
Ping Li(李萍), Na Gao(高娜), Rui-Xian Yu(蔚瑞贤), Jun Wang(王俊), Su-Yu Li(李苏宇), Fu-Ming Guo(郭福明), and Yu-Jun Yang(杨玉军). Chin. Phys. B, 2022, 31(10): 103303.
[14] Mid-infrared supercontinuum and optical frequency comb generations in a multimode tellurite photonic crystal fiber
Xu Han(韩旭), Ying Han(韩颖), Chao Mei(梅超), Jing-Zhao Guan(管景昭), Yan Wang(王彦), Lin Gong(龚琳), Jin-Hui Yuan(苑金辉), and Chong-Xiu Yu(余重秀). Chin. Phys. B, 2021, 30(9): 094207.
[15] Orientation dependence in high harmonics of ZnO with polarization corrections to counteract the birefringent effect
Yin-Fu Zhang(张银福), Teng-Fei Huang(黄腾飞), Jia-Peng Li(李佳鹏), Ke Yang(杨可), Liang Li(李亮), Xiao-Song Zhu(祝晓松), Peng-Fei Lan(兰鹏飞), and Pei-Xiang Lu(陆培祥). Chin. Phys. B, 2021, 30(7): 074204.
No Suggested Reading articles found!