Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(6): 068501    DOI: 10.1088/1674-1056/20/6/068501
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

First principles simulation technique for characterizing single event effects

Guo Ganga, Yan Yi-Huab, Zhang Ke-Yingc, Guo Hong-Xiac, Luo Yin-Hongc, Fan Ru-Yuc, Chen Weic, Lin Dong-Shengc
a China Institute of Atomic Energy, Beijing 102413, China; b Department of Engineering Physics, Tsinghua University, Beijing 100084, China; c Northwest Institute of Nuclear Techniques, Xi'an 710024, China
Abstract  This paper develops a new simulation technique to characterize single event effects on semiconductor devices. The technique used to calculate the single event effects is developed according to the physical interaction mechanism of a single event effect. An application of the first principles simulation technique is performed to predict the ground-test single event upset effect on field-programmable gate arrays based on 0.25 μm advanced complementary metal-oxide-semiconductor technology. The agreement between the single event upset cross section accessed from a broad-beam heavy ion experiment and simulation shows that the simulation technique could be used to characterize the single event effects induced by heavy ions on a semiconductor device.
Keywords:  single event effect      static random access memory      cross section      simulation     
Received:  17 June 2010      Published:  15 June 2011
PACS:  85.30.De (Semiconductor-device characterization, design, and modeling)  
  61.81.Fk  

Cite this article: 

Zhang Ke-Ying, Guo Hong-Xia, Luo Yin-Hong, Fan Ru-Yu, Chen Wei, Lin Dong-Sheng, Guo Gang, Yan Yi-Hua First principles simulation technique for characterizing single event effects 2011 Chin. Phys. B 20 068501

[1] Dodd P E and Massengill Lloyd W 2003 IEEE Trans. Nucl. Sci. 50 583
[2] Reed R A, Weller R A and Mendenhall M H 2007 IEEE Trans. Nucl. Sci. 54 2312
[3] Shaneyfelt M R, Schwank J R and Dodd P E 2008 IEEE Trans. Nucl. Sci. 55 1926
[4] Black J D, Ball D R and Robinson W H 2008 IEEE Trans. Nucl. Sci. 55 2943
[5] Srour J R 2003 IEEE Trans. Nucl. Sci. 50 653
[6] Hughes H L 2003 IEEE Trans. Nucl. Sci. 50 500
[7] Petersen E L 1997 IEEE Trans. Nucl. Sci. 44 2174
[8] Palau J M 2001 IEEE Trans. Nucl. Sci. 48 225
[9] Dodd P E 1996 IEEE Trans. Nucl. Sci. 43 561
[10] Inguimbert C, Duzellier S and Ecoffet R 2002 IEEE Trans. Nucl. Sci. 49 1480
[11] Xapsos M A 2004 IEEE Trans. Nucl. Sci. 51 3250
[12] Dodds N A and Reed R A 2009 IEEE Trans. Nucl. Sci. 56 3172
[13] Palau J M and Wrobel F 2002 IEEE Trans. Nucl. Sci. 49 3075
[14] Kevin R A and Warren W M 2007 IEEE Trans. Nucl. Sci. 54 988
[15] Yui C, Swift G and Carmichael C 2002 Single Event Upset Susceptibility Testing of the Xilinx Virtex-II FPGA
[16] Messenger S R 2003 IEEE Trans. Nucl. Sci. 50 1919
[17] Dodd P E 2007 IEEE Trans. Nucl. Sci. 54 889
[18] Palau J M 2001 IEEE Trans. Nucl. Sci. 48 225
[19] Dodd P E 2007 IEEE Trans. Nucl. Sci. 54 2303
[20] Emfietzoglou D 2004 IEEE Trans. Nucl. Sci. 51 2872
[21] Petersen E 1996 IEEE Trans. Nucl. Sci. 43 2805
[22] Messenger S R 2004 IEEE Trans. Nucl. Sci. 51 2846
[23] Zhu X 2000 IEEE Trans. Nucl. Sci. 47 2568
[34] Tipton A D 2006 IEEE Trans. Nucl. Sci. 53 3259
[25] Dodd P E 1996 IEEE Trans. Nucl. Sci. 43 2797
[26] Mayaram K 1993 IEEE Trans. Nucl. Sci. 23 1726
[27] Sze S M 1981 Physics of Semiconductor Devices (New York: John Wiley & Sons, Inc) pp. 530-570
[28] Metzger S, Dreute J and Heinrich W 1994 IEEE Trans. Nucl. Sci. 41 589
[29] Smith E C 1995 IEEE Trans. Nucl. Sci. 42 1772
[1] Size effect of He clusters on the interactions with self-interstitial tungsten atoms at different temperatures
Jinlong Wang(王金龙), Wenqiang Dang(党文强), Daping Liu(刘大平), Zhichao Guo(郭志超). Chin. Phys. B, 2020, 29(9): 093101.
[2] Suppression of auto-resonant stimulated Brillouin scattering in supersonic flowing plasmas by different forms of incident lasers
S S Ban(班帅帅), Q Wang(王清), Z J Liu(刘占军), C Y Zheng(郑春阳), X T He(贺贤土). Chin. Phys. B, 2020, 29(9): 095202.
[3] Oscillation of S5 helix under different temperatures in determination of the open probability of TRPV1 channel
Tie Li(李铁), Jun-Wei Li(李军委), Chun-Li Pang(庞春丽), Hailong An(安海龙), Yi-Zhao Geng(耿轶钊), Jing-Qin Wang(王景芹). Chin. Phys. B, 2020, 29(9): 098701.
[4] Effect of radio frequency bias on plasma characteristics of inductively coupled argon discharge based on fluid simulations
Xiao-Yan Sun(孙晓艳), Yu-Ru Zhang(张钰如), Sen Chai(柴森), You-Nian Wang(王友年), Yan-Yan Chu(楚艳艳), Jian-Xin He(何建新). Chin. Phys. B, 2020, 29(9): 095203.
[5] An extended cellular automata model with modified floor field for evacuation
Da-Hui Qin(秦大辉), Yun-Fei Duan(段云飞), Dong Cheng(程栋), Ming-Zhu Su(苏铭著), Yong-Bo Shao(邵永波). Chin. Phys. B, 2020, 29(9): 098901.
[6] Selective linear etching of monolayer black phosphorus using electron beams
Yuhao Pan(潘宇浩), Bao Lei(雷宝), Jingsi Qiao(乔婧思), Zhixin Hu(胡智鑫), Wu Zhou(周武), Wei Ji(季威). Chin. Phys. B, 2020, 29(8): 086801.
[7] A new car-following model with driver's anticipation effect of traffic interruption probability
Guang-Han Peng(彭光含). Chin. Phys. B, 2020, 29(8): 084501.
[8] Spontaneous growth of the reconnection electric field during magnetic reconnection with a guide field: A theoretical model and particle-in-cell simulations
Kai Huang(黄楷), Quan-Ming Lu(陆全明), Rong-Sheng Wang(王荣生), Shui Wang(王水). Chin. Phys. B, 2020, 29(7): 075202.
[9] Study on γ-ray source from the resonant reaction 19F(p,αγ)16O at Ep=340 keV
Fu-Long Liu(刘伏龙), Wan-Sha Yang(杨婉莎), Ji-Hong Wei(魏继红), Di Wu(吴笛), Yang-Fan He(何阳帆), Yu-Chen Li(李雨尘), Tian-Li Ma(马田丽), Yang-Ping Shen(谌阳平), Qi-Wen Fan(樊启文), Chuang-Ye He(贺创业), Bing Guo(郭冰), Nai-Yan Wang(王乃彦). Chin. Phys. B, 2020, 29(7): 070702.
[10] Simulation of microswimmer hydrodynamics with multiparticle collision dynamics
Andreas Zöttl. Chin. Phys. B, 2020, 29(7): 074701.
[11] Different potential of mean force of two-state protein GB1 and downhill protein gpW revealed by molecular dynamics simulation
Xiaofeng Zhang(张晓峰), Zilong Guo(郭子龙), Ping Yu(余平), Qiushi Li(李秋实), Xin Zhou(周昕), Hu Chen(陈虎). Chin. Phys. B, 2020, 29(7): 078701.
[12] Large eddy simulations of a triangular jet and its counterpart through a chamber
Xiu Xiao(肖秀), Guo-Chang Wang(王国昌), Min-Yi Xu(徐敏义), Jian-Chun Mi(米建春). Chin. Phys. B, 2020, 29(6): 064701.
[13] Mechanism analysis of reaction S+(2D)+H2(X1Σg+)→SH+(X3Σ-)+H(2S) based on the quantum state-to-state dynamics
Jin-Yu Zhang(张金玉), Ting Xu(许婷), Zhi-Wei Ge(葛志伟), Juan Zhao(赵娟), Shou-Bao Gao(高守宝), Qing-Tian Meng(孟庆田). Chin. Phys. B, 2020, 29(6): 063101.
[14] Simulation of helium supersonic molecular beam injection in tokamak plasma
Xue-Ke Wu(吴雪科), Zhan-Hui Wang(王占辉), Hui-Dong Li(李会东), Li-Ming Shi(石黎铭), Di Wan(万迪), Qun-Chao Fan(樊群超), Min Xu(许敏). Chin. Phys. B, 2020, 29(6): 065201.
[15] Balancing strength and plasticity of dual-phase amorphous/crystalline nanostructured Mg alloys
Jia-Yi Wang(王佳怡), Hai-Yang Song(宋海洋), Min-Rong An(安敏荣), Qiong Deng(邓琼), Yu-Long Li(李玉龙). Chin. Phys. B, 2020, 29(6): 066201.
No Suggested Reading articles found!