Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(4): 045101    DOI: 10.1088/1674-1056/20/4/045101
PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES Prev   Next  

Structural and thermodynamic properties of OsN2 from first-principles calculations

Liu Chun-Mei(刘春梅), Ge Ni-Na(葛妮娜), Fu Zhi-Jian(付志坚), Cheng Yan(程艳), and Zhu Jun(朱俊)
Institute of Atomic and Molecular Physics, College of Physical Science and Technology, Sichuan University, Chengdu 610064, China
Abstract  We investigate the structural and thermodynamic properties of OsN2 by a plane-wave pseudopotential density functional theory method. The obtained lattice constant, bulk modulus and cell volume per unit formula are consistent with the available theoretical data. Moreover, the pressure-induced phase transition of OsN2 from pyrite structure to fluorite structure has been obtained. It is found that the transition pressure of OsN2 at zero temperature is 67.2 GPa. The bulk modulus B as well as other thermodynamic quantities of fluorite OsN2 (including the Grüneisen constant $\gamma$ and thermal expansion $\alpha$) on temperatures and pressures have also been obtained.
Keywords:  transition phase      thermodynamic properties      density functional theory      OsN2  
Received:  28 April 2010      Revised:  17 November 2010      Accepted manuscript online: 
PACS:  51.30.+i (Thermodynamic properties, equations of state)  
  71.15.Mb (Density functional theory, local density approximation, gradient and other corrections)  
  72.80.Ga (Transition-metal compounds)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 10776022) and the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20090181110080).

Cite this article: 

Liu Chun-Mei(刘春梅), Ge Ni-Na(葛妮娜), Fu Zhi-Jian(付志坚), Cheng Yan(程艳), and Zhu Jun(朱俊) Structural and thermodynamic properties of OsN2 from first-principles calculations 2011 Chin. Phys. B 20 045101

[1] Yu R and Zhang X F 2005 Phys. Rev. B 72 054103
[2] Young A F, Sanloup C, Gregoryanz E, Scandolo S, Hemley R J and Mao H K 2006 Phys. Rev. Lett. 96 155501
[3] Fan C Z, Zeng S Y, Li L X, Zhan Z J, Liu R P, Wang W K, Zhang P and Yao Y G 2006 Phys. Rev. B 74 125118
[4] Wang Y X, Arai M and Sasaki T 2007 Appl. Phys. Lett. 90 061992
[5] Chen Z W, Guo X J, Liu Z Y, Ma M Z, Jing Q, Li G, Zhang X Y, Li L X, Wang Q, Tian Y J and Liu R P 2007 Phys. Rev. B 75 054103
[6] Wu Z J, Hao X F, Liu X J and Meng J 2007 Phys. Rev. B 75 054115
[7] Hernández E R and Canadell E 2008 J. Mater. Chem. 18 2090
[8] Zhang M, Wang M, Cui T, Ma Y M, Niu Y L and Zou G T 2008 J. Phys. Chem. Solids 69 2096
[9] ^Aberg D, Sadigh B, Crowhurst J and Goncharov A F 2008 Phys. Rev. Lett. 100 095501
[10] Hernández A D, Montoya J A, Profeta G and Scandolo S 2008 Phys. Rev. B 77 092504
[11] Payne M C, Teter M P, Allen D C, Arias T A and Joannopoulos J D 1992 Rev. Mod. Phys. 64 1045
[12] Milman V, Winkler B, White J A, Packard C J, Payne M C, Akhmatskaya E V and Nobes R H 2000 Int. J. Quantum Chem. 77 895
[13] Murnaghan F D 1937 Am. J. Math. 49 235
[14] Poirier J P and Tarantola A 1998 Phys. Earth Planet Int. 109 1
[15] Blanco M A, Francisco E and Luana V 2004 Comput. Phys. Commun. 158 57
[16] Vanderbilt D 1990 Phys. Rev. B 41 7892
[17] Vosko S H, Wilk L and Nussair M 1980 Can. J. Phys. 58 1200
[18] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[19] Francisco E, Blanco M A and Sanjurjo G 2001 Phys. Rev. B 63 094107
[20] Lu L Y, Chen X R, Cheng Y and Zhao J Z 2005 Solid State Commun. 136 152
[21] Maradudin A A, Montroll E W, Weiss G H and Ipatova I P 1971 Theory of Lattice Dynamics in the Harmonic Approximation (New York: Academic Press)
[22] Blanco M A, Mart'hin P A, Francisco E, Recio J M and Franco R 1996 J. Mol. Struct. (Theochem.) 368 245
[23] Flórez M, Recio J M, Francisco E, Blanco M A and Pendás A M 2002 Phys. Rev. B 66 144112
[24] Cheng Y, Lu L Y, Jia O H and Chen X R 2008 Chin. Phys. B 17 1355
[25] Zhang W, Cheng Y, Zhu J and Chen X R 2009 Chin. Phys. B 18 1207
[26] Chang J, Cheng Y and Fu M 2010 J. At. Mol. Sci. 1 243
[27] Fu Z J, Ji G F, Chen X R and Gou Q Q 2009 Commun. Theor. Phys. 51 1129 endfootnotesize
[1] Predicting novel atomic structure of the lowest-energy FenP13-n(n=0-13) clusters: A new parameter for characterizing chemical stability
Yuanqi Jiang(蒋元祺), Ping Peng(彭平). Chin. Phys. B, 2023, 32(4): 047102.
[2] Ferroelectricity induced by the absorption of water molecules on double helix SnIP
Dan Liu(刘聃), Ran Wei(魏冉), Lin Han(韩琳), Chen Zhu(朱琛), and Shuai Dong(董帅). Chin. Phys. B, 2023, 32(3): 037701.
[3] A theoretical study of fragmentation dynamics of water dimer by proton impact
Zhi-Ping Wang(王志萍), Xue-Fen Xu(许雪芬), Feng-Shou Zhang(张丰收), and Xu Wang(王旭). Chin. Phys. B, 2023, 32(3): 033401.
[4] Plasmonic hybridization properties in polyenes octatetraene molecules based on theoretical computation
Nan Gao(高楠), Guodong Zhu(朱国栋), Yingzhou Huang(黄映洲), and Yurui Fang(方蔚瑞). Chin. Phys. B, 2023, 32(3): 037102.
[5] Effects of π-conjugation-substitution on ESIPT process for oxazoline-substituted hydroxyfluorenes
Di Wang(汪迪), Qiao Zhou(周悄), Qiang Wei(魏强), and Peng Song(宋朋). Chin. Phys. B, 2023, 32(2): 028201.
[6] High-order harmonic generation of the cyclo[18]carbon molecule irradiated by circularly polarized laser pulse
Shu-Shan Zhou(周书山), Yu-Jun Yang(杨玉军), Yang Yang(杨扬), Ming-Yue Suo(索明月), Dong-Yuan Li(李东垣), Yue Qiao(乔月), Hai-Ying Yuan(袁海颖), Wen-Di Lan(蓝文迪), and Mu-Hong Hu(胡木宏). Chin. Phys. B, 2023, 32(1): 013201.
[7] First-principles study of a new BP2 two-dimensional material
Zhizheng Gu(顾志政), Shuang Yu(于爽), Zhirong Xu(徐知荣), Qi Wang(王琪), Tianxiang Duan(段天祥), Xinxin Wang(王鑫鑫), Shijie Liu(刘世杰), Hui Wang(王辉), and Hui Du(杜慧). Chin. Phys. B, 2022, 31(8): 086107.
[8] Adaptive semi-empirical model for non-contact atomic force microscopy
Xi Chen(陈曦), Jun-Kai Tong(童君开), and Zhi-Xin Hu(胡智鑫). Chin. Phys. B, 2022, 31(8): 088202.
[9] Collision site effect on the radiation dynamics of cytosine induced by proton
Xu Wang(王旭), Zhi-Ping Wang(王志萍), Feng-Shou Zhang(张丰收), and Chao-Yi Qian (钱超义). Chin. Phys. B, 2022, 31(6): 063401.
[10] First principles investigation on Li or Sn codoped hexagonal tungsten bronzes as the near-infrared shielding material
Bo-Shen Zhou(周博深), Hao-Ran Gao(高浩然), Yu-Chen Liu(刘雨辰), Zi-Mu Li(李子木),Yang-Yang Huang(黄阳阳), Fu-Chun Liu(刘福春), and Xiao-Chun Wang(王晓春). Chin. Phys. B, 2022, 31(5): 057804.
[11] Laser-induced fluorescence experimental spectroscopy and theoretical calculations of uranium monoxide
Xi-Lin Bai(白西林), Xue-Dong Zhang(张雪东), Fu-Qiang Zhang(张富强), and Timothy C Steimle. Chin. Phys. B, 2022, 31(5): 053301.
[12] Tunable electronic properties of GaS-SnS2 heterostructure by strain and electric field
Da-Hua Ren(任达华), Qiang Li(李强), Kai Qian(钱楷), and Xing-Yi Tan(谭兴毅). Chin. Phys. B, 2022, 31(4): 047102.
[13] Insights into the adsorption of water and oxygen on the cubic CsPbBr3 surfaces: A first-principles study
Xin Zhang(张鑫), Ruge Quhe(屈贺如歌), and Ming Lei(雷鸣). Chin. Phys. B, 2022, 31(4): 046401.
[14] Influence of intramolecular hydrogen bond formation sites on fluorescence mechanism
Hong-Bin Zhan(战鸿彬), Heng-Wei Zhang(张恒炜), Jun-Jie Jiang(江俊杰), Yi Wang(王一), Xu Fei(费旭), and Jing Tian(田晶). Chin. Phys. B, 2022, 31(3): 038201.
[15] Effect of structural vacancies on lattice vibration, mechanical, electronic, and thermodynamic properties of Cr5BSi3
Tian-Hui Dong(董天慧), Xu-Dong Zhang(张旭东), Lin-Mei Yang(杨林梅), and Feng Wang(王峰). Chin. Phys. B, 2022, 31(2): 026101.
No Suggested Reading articles found!