Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(2): 027801    DOI: 10.1088/1674-1056/20/2/027801
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Infrared quantum cutting conversion luminescence of Tb(0.7)Yb(3):FOV

Chen Xiao-Bo(陈晓波)a),Kang Dong-Guo(康洞国)b),Li Song(李崧)a), Wen Lei(温磊)c),Yu Chun-Lei(于春雷)c),Hu Li-Li(胡丽丽)c),and Zhou Jing(周静)a)
a Nuclear Science & Technology College and Analytical Testing Center, Applied Optics Beijing Area Major Laboratory, Beijing Normal University, Beijing 100875, China; b Beijing Institute of Applied Physics and Computational Mathematics, Beijing 100088, China; c Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
Abstract  The infrared quantum cutting of oxyfluoride nanophase vitroceramics Tb(0.7)Yb(3):FOV has been studied in the present paper. The actual quantum cutting efficiency formula calculated from integral fluorescence  intensity is extended to the case of Tb(0.7)Yb(3):FOV. The visible and the infrared fluorescence spectra and their integral fluorescence intensities are measured from static fluorescence experiment. Lifetime curve is measured  from dynamic fluorescence experiment. It is found that the total actual quantum cutting efficiency $\eta $ of the excited $^{5}$D$_{4}$ level is about 93.7%, and that of excited ($^{5}$D$_{3}$, $^{5}$G$_{6})$ levels is  93.5%. It is also found that the total theoretical quantum cutting efficiency upper limit $\eta _{x\%\rm Yb} $ of the 485.5 nm excited $^{5}$D$_{4}$ level is about 121.7%, and that of 378.5 nm excited ($^{5}$D$_{3}$,  $^{5}$G$_{6})$ levels is 137.2%.
Keywords:  infrared quantum cutting      solar cell      oxyfluoride nanophase vitroceramics Tb(0.7)Yb(3):FOV  
Received:  03 June 2010      Revised:  01 August 2010      Accepted manuscript online: 
PACS:  78.55.-m (Photoluminescence, properties and materials)  
  78.55.-a  
  78.30.-j (Infrared and Raman spectra)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 10674019).

Cite this article: 

Chen Xiao-Bo(陈晓波), Kang Dong-Guo(康洞国), Li Song(李崧), Wen Lei(温磊), Yu Chun-Lei(于春雷), Hu Li-Li(胡丽丽), and Zhou Jing(周静) Infrared quantum cutting conversion luminescence of Tb(0.7)Yb(3):FOV 2011 Chin. Phys. B 20 027801

[1] Yang G Z National Natural Science Foundation of China 1995 Optical Physics (Beijing: Science Press) (in Chinese)
[2] Wegh R T, Donker H, Oskam K D and Meijerink A 1999 Science 283 663
[3] Bitnar B 2003 Semicond. Sci. Technol. 18 S221
[4] Matsui T, Ogata K, Isomura M and Kondo M 2006 J. Non-crystalline Solids 352 1255
[5] Song Z F, Lian S R and Wang S K 1982 Acta Phys. Sin. 31 772 (in Chinese)
[6] Zhou J J, Teng Y, Ye S, Xu X Q and Qiu J R 2010 Opt. Express 18 21663
[7] Van der Ende B M, Aarts L and Meijerink A 2009 wxAdv. Mater.21 3073
[8] Chen D Q, Wang Y S, Yu Y L, Huang P and Weng F Y 2008 Opt. Lett. 33 1884
[9] Richards B S 2006 Solar Energy Materials & Solar Cells 90 1189
[10] Vergeer P, Vlugt T J H, Kox M H F, Hertog M I den, van der Eerden J P J M and Meijerink A 2005 Phys. Rev. B 71 014119
[11] Lee T J, Luo L Y, Chen T M, Diau E W G, Cheng B M and Tung C Y 2006 Appl. Phys. Lett. 89 131121
[12] Tzenga H Y, Cheng B M and Chen T M 2007 J. Lumine. bf 122--123 917
[13] Carnall W T, Fieldd R and Rajnank K T 1968 J. Chem. Phys. 49 4424
[14] Zhang Q Y and Huang X Y 2010 Prog. Mater. Sci. bf55 353
[15] Zhang Q Y, Yang C H and Pan Y X 2007 Appl. Phys. Lett. 90 021107
[16] Wang N Y and Zhang L 2001 Acta Phys. Sin. 50 693 (in Chinese)
[17] Ni P G, Chen H Y, Guo H L, Zhang Q and Zhang D Z 2003 Appl. Phys. Lett. bf82 373
[18] Chen X B, Song Z F and Sawanobori N 2001 wxChin. Phys.10 565
[19] Kang X Y, Ji Y P and Jin Y J 2008 Chin. Phys. B bf17 1041
[20] Nie Y X, Yuan H T, Feng K C, Li C, He C J and Wang X J 2004 Chin. Phys. bf13 82
[21] Yang G J, Gong Q H and Wang K G 2000 Acta Phys. Sin. bf49 1485
[22] Xu X R and Shu M Z 2003 Science of Luminescence and Luminescent Material (Beijing: The Publishing Center of Material Science and Engineering) (in Chinese)
[23] Ni P G, Zhang S Z and Ji P W 2008 Bulletin of National Natural Science Foundation of China 2008/5 301 (in Chinese)
[24] Reisfeld R 1977 Lasers and Excited States of Rare-Earth (New York, Berlin, Heidelberg: Springer-Verlag)
[25] Forster T 1948 wxAnn. Phys.2 55
[26] Dexter D L 1957 wxPhys. Rev.108 630
[27] Kushida T 1973 J. Phys. Soc. Jpn. 34 1318
[28] Li G J, Hou G F, Han X Y, Yuan Y J, Wei C C, Sun J, Zhao Y and Geng X H 2009 Chin. Phys. B bf18 1675
[29] Xiao S G and Yang X L 2002 wxChin. Phys.11 188
[30] Wang E G, Guo Y, Zhang Y F, Oe T Z, Bao X Y, Tang Z, Zhang L X, Zhu W G, Niu Q, Qiu Z Q, Jia J F and Zhao Z X 2004 Science 306 5703
[1] Electroluminescence explored internal behavior of carriers in InGaAsP single-junction solar cell
Xue-Fei Li(李雪飞), Wen-Xian Yang(杨文献), Jun-Hua Long(龙军华), Ming Tan(谭明), Shan Jin(金山), Dong-Ying Wu(吴栋颖), Yuan-Yuan Wu(吴渊渊), and Shu-Long Lu(陆书龙). Chin. Phys. B, 2023, 32(1): 017801.
[2] Hexagonal boron phosphide and boron arsenide van der Waals heterostructure as high-efficiency solar cell
Yi Li(李依), Dong Wei(魏东), Gaofu Guo(郭高甫), Gao Zhao(赵高), Yanan Tang(唐亚楠), and Xianqi Dai(戴宪起). Chin. Phys. B, 2022, 31(9): 097301.
[3] Sub-stochiometric MoOx by radio-frequency magnetron sputtering as hole-selective passivating contacts for silicon heterojunction solar cells
Xiufang Yang(杨秀芳), Shengsheng Zhao(赵生盛), Qian Huang(黄茜), Cao Yu(郁超), Jiakai Zhou(周佳凯), Xiaoning Liu(柳晓宁), Xianglin Su(苏祥林),Ying Zhao(赵颖), and Guofu Hou(侯国付). Chin. Phys. B, 2022, 31(9): 098401.
[4] Optical simulation of CsPbI3/TOPCon tandem solar cells with advanced light management
Min Yue(岳敏), Yan Wang(王燕), Hui-Li Liang(梁会力), and Zeng-Xia Mei (梅增霞). Chin. Phys. B, 2022, 31(8): 088801.
[5] Improving efficiency of inverted perovskite solar cells via ethanolamine-doped PEDOT:PSS as hole transport layer
Zi-Jun Wang(王子君), Jia-Wen Li(李嘉文), Da-Yong Zhang(张大勇), Gen-Jie Yang(杨根杰), and Jun-Sheng Yu(于军胜). Chin. Phys. B, 2022, 31(8): 087802.
[6] Ferroelectric Ba0.75Sr0.25TiO3 tunable charge transfer in perovskite devices
Zi-Xuan Chen(陈子轩), Jia-Lin Sun(孙家林), Qiang Zhang(张强), Chong-Xin Qian(钱崇鑫), Ming-Zi Wang(王明梓), and Hong-Jian Feng(冯宏剑). Chin. Phys. B, 2022, 31(5): 057202.
[7] Applications and functions of rare-earth ions in perovskite solar cells
Limin Cang(苍利民), Zongyao Qian(钱宗耀), Jinpei Wang(王金培), Libao Chen(陈利豹), Zhigang Wan(万志刚), Ke Yang(杨柯), Hui Zhang(张辉), and Yonghua Chen(陈永华). Chin. Phys. B, 2022, 31(3): 038402.
[8] Analysis of the generation mechanism of the S-shaped JV curves of MoS2/Si-based solar cells
He-Ju Xu(许贺菊), Li-Tao Xin(辛利桃), Dong-Qiang Chen(陈东强), Ri-Dong Cong(丛日东), and Wei Yu(于威). Chin. Phys. B, 2022, 31(3): 038503.
[9] An n—n type heterojunction enabling highly efficientcarrier separation in inorganic solar cells
Gang Li(李刚), Yuqian Huang(黄玉茜), Rongfeng Tang(唐荣风), Bo Che(车波), Peng Xiao(肖鹏), Weitao Lian(连伟涛), Changfei Zhu(朱长飞), and Tao Chen(陈涛). Chin. Phys. B, 2022, 31(3): 038803.
[10] Reveal the large open-circuit voltage deficit of all-inorganicCsPbIBr2 perovskite solar cells
Ying Hu(胡颖), Jiaping Wang(王家平), Peng Zhao(赵鹏), Zhenhua Lin(林珍华), Siyu Zhang(张思玉), Jie Su(苏杰), Miao Zhang(张苗), Jincheng Zhang(张进成), Jingjing Chang(常晶晶), and Yue Hao(郝跃). Chin. Phys. B, 2022, 31(3): 038804.
[11] Charge transfer modification of inverted planar perovskite solar cells by NiOx/Sr:NiOx bilayer hole transport layer
Qiaopeng Cui(崔翘鹏), Liang Zhao(赵亮), Xuewen Sun(孙学文), Qiannan Yao(姚倩楠), Sheng Huang(黄胜), Lei Zhu(朱磊), Yulong Zhao(赵宇龙), Jian Song(宋健), and Yinghuai Qiang(强颖怀). Chin. Phys. B, 2022, 31(3): 038801.
[12] Effect of net carriers at the interconnection layer in tandem organic solar cells
Li-Jia Chen(陈丽佳), Guo-Xi Niu(牛国玺), Lian-Bin Niu(牛连斌), and Qun-Liang Song(宋群梁). Chin. Phys. B, 2022, 31(3): 038802.
[13] Surface modulation of halide perovskite films for efficient and stable solar cells
Qinxuan Dai(戴沁煊), Chao Luo(骆超), Xianjin Wang(王显进), Feng Gao(高峰), Xiaole Jiang(姜晓乐), and Qing Zhao(赵清). Chin. Phys. B, 2022, 31(3): 037303.
[14] Nano Ag-enhanced photoelectric conversion efficiency in all-inorganic, hole-transporting-layer-free CsPbIBr2 perovskite solar cells
Youming Huang(黄友铭), Yizhi Wu(吴以治), Xiaoliang Xu(许小亮), Feifei Qin(秦飞飞), Shihan Zhang(张诗涵), Jiakai An(安嘉凯), Huijie Wang(王会杰), and Ling Liu(刘玲). Chin. Phys. B, 2022, 31(12): 128802.
[15] A silazane additive for CsPbI2Br perovskite solar cells
Ruiqi Cao(曹瑞琪), Yaochang Yue(乐耀昌), Hong Zhang(张弘), Qian Cheng(程倩), Boxin Wang(王博欣), Shilin Li(李世麟), Yuan Zhang(张渊), Shuhong Li(李书宏), and Huiqiong Zhou(周惠琼). Chin. Phys. B, 2022, 31(11): 110101.
No Suggested Reading articles found!