Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(2): 028101    DOI: 10.1088/1674-1056/20/2/028101
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Fabrication and electrochemical properties of free-standing single-walled carbon nanotube film electrodes

Niu Zhi-Qiang(牛志强)a)b),Ma Wen-Jun(马文君)a)b),Dong Hai-Bo(董海博)a)b), Li Jin-Zhu(李金柱)a)b),and Zhou Wei-Ya(周维亚)a)
a Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China; b Graduate School of the Chinese Academy of Sciences, Beijing 100049, China
Abstract  An easily manipulative approach was presented to fabricate electrodes using free-standing single-walled carbon nanotube (SWCNT) films grown directly by chemical vapor deposition. Electrochemical properties of the electrodes were investigated. In comparison with the post-deposited SWCNT papers, the directly grown SWCNT film electrodes manifested enhanced electrochemical properties and sensitivity of sensors as well as excellent electrocatalytic activities. A transition from macroelectrode to nanoelectrode behaviours was observed with the increase of scan rate. The heat treatment of the SWCNT film electrodes increased the current signals of electrochemical analyser and background current, because the heat-treatment of the SWCNTs in air could create more oxide defects on the walls of the SWCNTs and make the surfaces of SWCNTs more hydrophilic. The excellent electrochemical properties of the directly grown and heat-treated free-standing SWCNT film electrodes show the potentials in biological and electrocatalytic applications.
Keywords:  single-walled carbon nanotube      electrode      electrochemical properties      electrocatalytic activities  
Received:  01 December 2010      Revised:  01 December 2010      Accepted manuscript online: 
PACS:  81.07.De (Nanotubes)  
  82.45.Fk (Electrodes)  
  82.45.Jn (Surface structure, reactivity and catalysis)  
  82.45.Yz (Nanostructured materials in electrochemistry)  
Fund: Project supported by the National Natural Science Foundation of China, the National Basic Research Program of China (Grant No. 2005CB623602), the Fund of the Beijing Municipal Education Commission (Grant No. YB20108000101) and the Key Item of Knowledge Innovation Project of the Chinese Academy of Sciences (Grant No. KJCX2-YW-M01).

Cite this article: 

Niu Zhi-Qiang(牛志强), Ma Wen-Jun(马文君), Dong Hai-Bo(董海博), Li Jin-Zhu(李金柱), and Zhou Wei-Ya(周维亚) Fabrication and electrochemical properties of free-standing single-walled carbon nanotube film electrodes 2011 Chin. Phys. B 20 028101

[1] McCreery R L 2008 Chem. Rev. 108 2646
[2] Ajayan P M 1999 Chem. Rev. 99 1787
[3] Moore V C, Strano M S, Haroz E H, Hauge R H, Smalley R E, Schmidt J and Talmon Y 2003 Nano Lett. 3 1379
[4] Barisci J N, Wallace G G and Baughman R H 2000 J. Electrochem. Soc. 147 4580
[5] Antiochia R, Lavagnini I, Magno F, Valentini T and Palleschi G 2004 Electroanalysis 16 1451
[6] Moore R R, Banks C E and Compton R G 2004 Anal. Chem. 76 2677
[7] Hu C H, Ding Y, Ji Y P, Xu J H and Hu S S 2010 Carbon 48 1345
[8] Yan Y M, Zhang M N, Gong K P, Su L, Guo Z X and Mao L Q 2005 Chem. Mater. 17 3457
[9] Zhang Y Z, Pan Y, Sit S, Zhang L P, Li S P and Shao M W 2007 Electroanalysis 19 1695
[10] Rouse J H and Lillehei P T 2003 Nano Lett. 3 59
[11] Wang B, Ma Y F, Li N, Wu Y P, Li F F and Chen Y S 2010 Adv. Mater. 22 3067
[12] Yu X Z, Mai Z B, Xiao Y and Zou X Y 2008 Electroanalysis 20 1246
[13] Sun W, Li X, Zhai Z and Jiao K 2008 Electroanalysis 20 2649
[14] Wang J X, Li M X, Shi Z J, Li N Q and Gu Z N 2002 Anal. Chem. 74 1993
[15] Luo H X, Shi Z J, Li N Q, Gu Z N and Zhuang Q K 2001 Anal. Chem. 73 915
[16] Gong K P, Zhu X Z, Zhao R, Xiong S X, Mao L Q and Chen C F 2005 Anal. Chem. bf 77 8158
[17] Ma W J, Song L, Yang R, Zhang T H, Zhao Y C, Sun L F, Ren Y, Liu D F, Liu L F, Shen J, Zhang Z X, Xiang Y J, Zhou W Y and Xie S S 2007 Nano Lett. 7 2307
[18] Zhang D H, Ryu K, Liu X L, Polikarpov E, Ly J, Tompson M E and Zhou C W 2006 Nano Lett. 6 1880
[19] Toth S, Fule M, Veres M, Selman J R, Arcon D, Pocsik I and Koos M 2005 Thin Solid Films 482 207
[20] Heller I, Kong J, Heering H A, Williams K A, Lemay S G and Dekker C 2005 Nano Lett. 5 137
[21] Bertoncello P, Edgeworth J P, Macpherson J V and Unwin P R 2007 J. Am. Chem. Soc. bf 129 10982
[22] Li J, Cassell A, Delzeit L, Han J and Meyyappan M 2002 J. Phys. Chem. B 106 9299
[23] Menon V P and Martin C R 1995 Anal. Chem. 67 1920
[24] Hrapovic S, Liu Y L, Male K B and Luong J H T 2004 Anal. Chem. 76 1083v
[25] Wilson N R, Guille M, Dumitrescu I, Fernandez V R, Rudd N C, Williams C G, Unwin P R and Macpherson J V 2006 Anal. Chem. 78 7006
[26] Banks C E, Davies T J, Wildgoose G G and Compton R G 2005 Chem. Commun. No. 7 829
[27] Gajendran P and Saraswathi R 2007 J. Phys. Chem. C 111 11320
[28] Hou P X, Liu C and Cheng H M 2008 Carbon 46 2003
[29] Zhang M N, Su L and Mao L Q 2006 Carbon 44 276
[30] Hu C G and Hu S S 2008 Langmuir 24 8890
[1] Lithium ion batteries cathode material: V2O5
Baohe Yuan(袁保合), Xiang Yuan(袁祥), Binger Zhang(张冰儿), Zheng An(安政), Shijun Luo(罗世钧), and Lulu Chen(陈露露). Chin. Phys. B, 2022, 31(3): 038203.
[2] Large-scale synthesis of polyynes with commercial laser marking technology
Liang Fang(房良), Yanping Xie(解燕平), Shujie Sun(孙书杰), and Wei Zi(訾威). Chin. Phys. B, 2022, 31(12): 126803.
[3] Three-dimensional vertical ZnO transistors with suspended top electrodes fabricated by focused ion beam technology
Chi Sun(孙驰), Linyuan Zhao(赵林媛), Tingting Hao(郝婷婷), Renrong Liang(梁仁荣), Haitao Ye(叶海涛), Junjie Li(李俊杰), and Changzhi Gu(顾长志). Chin. Phys. B, 2022, 31(1): 016801.
[4] High efficiency ETM-free perovskite cell composed of CuSCN and increasing gradient CH3NH3PbI3
Tao Wang(汪涛), Gui-Jiang Xiao(肖贵将), Ren Sun(孙韧), Lin-Bao Luo(罗林保), and Mao-Xiang Yi(易茂祥). Chin. Phys. B, 2022, 31(1): 018801.
[5] Analysis on diffusion-induced stress for multi-layer spherical core-shell electrodes in Li-ion batteries
Siyuan Yang(杨思源), Chuanwei Li(李传崴), Zhifeng Qi(齐志凤), Lipan Xin(辛立攀), Linan Li(李林安), Shibin Wang(王世斌), and Zhiyong Wang(王志勇). Chin. Phys. B, 2021, 30(9): 098201.
[6] Stabilization of formamidinium lead iodide perovskite precursor solution for blade-coating efficient carbon electrode perovskite solar cells
Yu Zhan(占宇), Weijie Chen(陈炜杰), Fu Yang(杨甫), and Yaowen Li(李耀文). Chin. Phys. B, 2021, 30(8): 088803.
[7] Silicon micropillar electrodes of lithiumion batteries used for characterizing electrolyte additives
Fangrong Hu(胡放荣), Mingyang Zhang(张铭扬), Wenbin Qi(起文斌), Jieyun Zheng(郑杰允), Yue Sun(孙悦), Jianyu Kang(康剑宇), Hailong Yu(俞海龙), Qiyu Wang(王其钰), Shijuan Chen(陈世娟), Xinhua Sun(孙新华), Baogang Quan(全保刚), Junjie Li(李俊杰), Changzhi Gu(顾长志), and Hong Li(李泓). Chin. Phys. B, 2021, 30(6): 068202.
[8] Instability of single-walled carbon nanotubes conveying Jeffrey fluid
Bei-Nan Jia(贾北楠) and Yong-Jun Jian(菅永军). Chin. Phys. B, 2021, 30(4): 044601.
[9] Peculiar diffusion behavior of AlCl4 intercalated in graphite from nanosecond-long molecular dynamics simulations
Qianpeng Wang(王乾鹏), Daye Zheng(郑大也), Lixin He(何力新), and Xinguo Ren(任新国). Chin. Phys. B, 2021, 30(10): 107102.
[10] Experimental investigation of electrode cycle performance and electrochemical kinetic performance under stress loading
Zi-Han Liu(刘子涵), Yi-Lan Kang(亢一澜), Hai-Bin Song(宋海滨), Qian Zhang(张茜), and Hai-Mei Xie(谢海妹). Chin. Phys. B, 2021, 30(1): 016201.
[11] Research of influence of the additional electrode on Hall thruster plume by particle-in-cell simulation
Xi-Feng Cao(曹希峰), Hui Liu(刘辉), Da-Ren Yu(于达仁). Chin. Phys. B, 2020, 29(9): 095204.
[12] SiO2 nanoparticle-regulated crystallization of lead halide perovskite and improved efficiency of carbon-electrode-based low-temperature planar perovskite solar cells
Zerong Liang(梁泽荣), Bingchu Yang(杨兵初), Anyi Mei(梅安意), Siyuan Lin(林思远), Hongwei Han(韩宏伟), Yongbo Yuan(袁永波), Haipeng Xie(谢海鹏), Yongli Gao(高永立), Conghua Zhou(周聪华). Chin. Phys. B, 2020, 29(7): 078401.
[13] Hybrid-PIC/PIC simulations on ion extraction by electric field in laser-induced plasma
Xiao-Yong Lu(卢肖勇), Cheng Yuan(袁程), Xiao-Zhang Zhang(张小章), Zhi-Zhong Zhang(张志忠). Chin. Phys. B, 2020, 29(4): 045201.
[14] Failure analysis with a focus on thermal aspect towards developing safer Na-ion batteries
Yuqi Li(李钰琦), Yaxiang Lu(陆雅翔), Liquan Chen(陈立泉), Yong-Sheng Hu(胡勇胜). Chin. Phys. B, 2020, 29(4): 048201.
[15] Review on electrode-level fracture in lithium-ion batteries
Bo Lu(吕浡), Chengqiang Ning(宁成强), Dingxin Shi(史定鑫), Yanfei Zhao(赵炎翡), Junqian Zhang(张俊乾). Chin. Phys. B, 2020, 29(2): 026201.
No Suggested Reading articles found!