Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(1): 017801    DOI: 10.1088/1674-1056/20/1/017801
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Multiband terahertz metamaterial absorber

Xu Zhuoa, Gu Chaob, Pei Zhi-Binb, Liu Jiab, Qu Shao-Boc, Gu Weid
a Electronic Materials Research Laboratory, Key Laboratory of Ministry of Education, Xi'an Jiaotong University, Xi'an 710049, China; b The College of Science, Air Force University of Engineering, Xi'an 710051, China; c The College of Science, Air Force University of Engineering, Xi'an 710051, China;Electronic Materials Research Laboratory, Key Laboratory of Ministry of Education, Xi'an Jiaotong University, Xi'an 710049, China; d The Engineering and Technical College of Chengdu University of Technology Department of Computer Science and Technology, Leshan 614300, China
Abstract  This paper reports the design of a multiband metamaterial (MM) absorber in the terahertz region. Theoretical and simulated results show that the absorber has four distinct and strong absorption points at 1.69, 2.76, 3.41 and 5.06 THz, which are consistent with `fingerprints' of some explosive materials. The retrieved material parameters show that the impedance of MM could be tuned to match approximately the impedance of the free space to minimise the reflectance at absorption frequencies and large power loss exists at absorption frequencies. The distribution of the power loss indicates that the absorber is an excellent electromagnetic wave collector: the wave is first trapped and reinforced in certain specific locations and then consumed. This multiband absorber has applications in the detection of explosives and materials characterisation.
Keywords:  multiband      metamaterial absorber      terahertz      electromagnetic resonance  
Received:  30 March 2010      Revised:  19 May 2010      Published:  15 January 2011
PACS:  78.20.Ci (Optical constants (including refractive index, complex dielectric constant, absorption, reflection and transmission coefficients, emissivity))  
  41.20.Jb (Electromagnetic wave propagation; radiowave propagation)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 60871027, 60901029 and 61071058), the National Basic Research Program of China (Grant No. 2009CB623306) and Key Laboratory of Shaanxi Provincial Synthetic Electronic Information System Foundation, China (Grant No. 200905A).

Cite this article: 

Gu Chao, Qu Shao-Bo, Pei Zhi-Bin, Xu Zhuo, Liu Jia, Gu Wei Multiband terahertz metamaterial absorber 2011 Chin. Phys. B 20 017801

[1] Veselago V G 1968 wxSov. Phys. Usp.10 509
[2] Shelby R A, Smith D R and Schultz S 2001 wxScience292 77
[3] Schurig D, Mock J J, Justice B J, Cummer S A, Pendry J B, Starr A F and Smith D R 2006 wxScience314 977
[4] Pendry J B, Holden A J, Stewart W J and Youngs I 1996 wxPhys. Rev. Lett.76 4773
[5] Pendry J B, Holden A J, Robbins D J and Stewart W J 1999 wxIEEE Trans. Microwave Theory Tech.47 2075
[6] Wiltshire M C K, Pendry J B, Young I R, Larkman D J, Gilderdale D J and Hajnal J V 2001 wxScience291 849
[7] Smith D R, Padilla W J, Vier D C, Nemat-Nasser S C and Schultz S 2000 wxPhys. Rev. Lett.84 4184
[8] Zhang S, Qu S B, Ma H, Xie F and Xu Z 2009 wxActa Phys. Sin.58 3961 (in Chinese)
[9] Gokkavas M, Guven K, Bulu I, Aydin K, Penciu R S, Kafesaki M, Soukoulis C M and Ozbay E 2006 wxPhys. Rev. B73 193103
[10] Yen T J, Padilla W J, Fang N, Vier D C, Smith D R, Pendry J B, Basov D N and Zhang X 2004 wxScience303 1494
[11] Linden S, Enkrich C, Wegener M, Zhou J F, Koschny T and Soukoulis C M 2004 wxScience306 1351
[12] Zhang S, Fan W, Panoiu N C, Malloy K J, Osgood R M and Brueck S R J 2005 wxPhys. Rev. Lett.95 137404
[13] Dolling G, Wegener M, Soukoulis C M and Linden S 2007 wxOpt. Lett.32 53
[14] Landy N I, Sajuyigbe S, Mock J J, Smith D R and Padilla W J 2008 wxPhys. Rev. Lett.100 207402
[15] Tao H, Landy N I, Bingham C M, Zhang X, Averitt R D and Padilla W J 2008 wxOpt. Express16 7181
[16] Tao H, Bingham C M, Strikwerda A C, Pilon D, Shrekenhamer D, Landy N I, Fan K, Zhang X, Padilla W J and Averitt R D 2008 wxPhys. Rev. B78 241103(R)
[17] Avitzour Y, Urzhumov Y A and Shvets G 2009 wxPhys. Rev. B79 045131
[18] Landy N I, Bingham C M, Tyler T, Jokerst N, Smith D R and Padilla W J 2009 wxPhys. Rev. B79 125104
[19] Wang G Q, Shen J L and Jia Y 2007 wxJ. Appl. Phys.102 013106
[20] Zhou Q L, Zhang C L, Mu K J, Jin B, Zhang L L, Li W W and Feng R S 2008 wxAppl. Phys. Lett.92 101106
[21] Zhang L L, Zhong H, Deng C, Zhang C L and Zhao Y J 2008 wxAppl. Phys. Lett.92 091117
[22] Zhou J F, Zhang L, Tuttle G, Koschny T and Soukoulis C M 2006 wxPhys. Rev. B73 041101
[1] Active metasurfaces for manipulatable terahertz technology
Jing-Yuan Wu(吴静远), Xiao-Feng Xu(徐晓峰), Lian-Fu Wei(韦联福). Chin. Phys. B, 2020, 29(9): 094202.
[2] Recent advances in generation of terahertz vortex beams andtheir applications
Honggeng Wang(王弘耿), Qiying Song(宋其迎), Yi Cai(蔡懿), Qinggang Lin(林庆钢), Xiaowei Lu(陆小微), Huangcheng Shangguan(上官煌城), Yuexia Ai(艾月霞), Shixiang Xu(徐世祥). Chin. Phys. B, 2020, 29(9): 097404.
[3] Symmetry-broken silicon disk array as an efficient terahertz switch working with ultra-low optical pump power
Zhanghua Han(韩张华), Hui Jiang(姜辉), Zhiyong Tan(谭智勇), Juncheng Cao(曹俊诚), Yangjian Cai(蔡阳健). Chin. Phys. B, 2020, 29(8): 084209.
[4] High performance terahertz anisotropic absorption in graphene-black phosphorus heterostructure
Jinming Liang(梁晋铭), Jiangtao Lei(雷江涛), Yun Wang(汪云), Yan Ding(丁燕), Yun Shen(沈云), Xiaohua Deng(邓晓华). Chin. Phys. B, 2020, 29(8): 087805.
[5] Research progress in terahertz quantum-cascade lasers and quantum-well photodetectors
Zhi-Yong Tan(谭智勇), Wen-Jian Wan(万文坚), Jun-Cheng Cao(曹俊诚). Chin. Phys. B, 2020, 29(8): 084212.
[6] Broadband terahertz time-domain spectroscopy and fast FMCW imaging: Principle and applications
Yao-Chun Shen(沈耀春), Xing-Yu Yang(杨星宇), Zi-Jian Zhang(张子健). Chin. Phys. B, 2020, 29(7): 078705.
[7] Temperature dependent terahertz giant anisotropy and cycloidal spin wave modes in BiFeO3 single crystal
Fan Liu(刘凡), Zuanming Jin(金钻明), Xiumei Liu(刘秀梅), Yuqing Fang(方雨青), Jiajia Guo(国家嘉), Yan Peng(彭滟), Zhenxiang Cheng(程振祥), Guohong Ma(马国宏), Yiming Zhu(朱亦鸣). Chin. Phys. B, 2020, 29(7): 077804.
[8] Recent progress in graphene terahertz modulators
Xieyu Chen(陈勰宇), Zhen Tian(田震), Quan Li(李泉), Shaoxian Li(李绍限), Xueqian Zhang(张学迁), Chunmei Ouyang(欧阳春梅), Jianqiang Gu(谷建强), Jiaguang Han(韩家广), Weili Zhang(张伟力). Chin. Phys. B, 2020, 29(7): 077803.
[9] Polarization conversion metasurface in terahertz region
Chen Zhou(周晨), Jiu-Sheng Li(李九生). Chin. Phys. B, 2020, 29(7): 078706.
[10] Terahertz polarization conversion and sensing with double-layer chiral metasurface
Zi-Yang Zhang(张子扬), Fei Fan(范飞), Teng-Fei Li(李腾飞), Yun-Yun Ji(冀允允), Sheng-Jiang Chang(常胜江). Chin. Phys. B, 2020, 29(7): 078707.
[11] Scattering and absorption characteristics of non-spherical cirrus cloud ice crystal particles in terahertz frequency band
Tao Xie(谢涛), Meng-Ting Chen(陈梦婷), Jian Chen(陈健), Feng Lu(陆风), Da-Wei An(安大伟). Chin. Phys. B, 2020, 29(7): 074102.
[12] A new nonlinear photoconductive terahertz radiation source based on photon-activated charge domain quenched mode
Wei Shi(施卫), Rujun Liu(刘如军), Chengang Dong(董陈岗), Cheng Ma(马成). Chin. Phys. B, 2020, 29(7): 078704.
[13] Narrowband perfect terahertz absorber based on polar-dielectrics metasurface
Meng-Meng Zhao(赵萌萌), Shu-Fang Fu(付淑芳), Sheng Zhou(周胜), Yu-Ling Song(宋玉玲), Qiang Zhang(张强), Yong-Qi Yin(尹永琦), Yu-Tian Zhao(赵玉田), Hong Liang(梁红), Xuan-Zhang Wang(王选章). Chin. Phys. B, 2020, 29(5): 054210.
[14] Single-shot measurement of THz pulses
Lei Yang(杨磊), Lei Hou(侯磊), Chengang Dong(董陈岗), Wei Shi(施卫). Chin. Phys. B, 2020, 29(5): 057803.
[15] Hydrodynamic simulation of chaotic dynamics in InGaAs oscillator in terahertz region
Wei Feng(冯伟). Chin. Phys. B, 2020, 29(4): 047302.
No Suggested Reading articles found!