Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(8): 080513    DOI: 10.1088/1674-1056/19/8/080513
GENERAL Prev   Next  

Interpreting a period-adding bifurcation scenario in neural bursting patterns using border-collision bifurcation in a discontinuous map of a slow control variable

Mo Juan(莫娟)a), Li Yu-Ye(李玉叶)a), Wei Chun-Ling(魏春玲)a), Yang Ming-Hao(杨明浩)a), Gu Hua-Guang(古华光)a)†ger, Qu Shi-Xian(屈世显)b), and Ren Wei(任维) a)
a College of Life Science, Shaanxi Normal University, Xi'an 710062, China; b College of Physics and Information Technology, Shaanxi Normal University, Xi'an 710062, China
Abstract  To further identify the dynamics of the period-adding bifurcation scenarios observed in both biological experiment and simulations with the differential Chay model, this paper fits a discontinuous map of a slow control variable of the Chay model based on simulation results. The procedure of period adding bifurcation scenario from period k to period k+1 bursting (k=1, 2, 3, 4) involved in the period-adding cascades and the stochastic effect of noise near each bifurcation point is also reproduced in the discontinuous map. Moreover, dynamics of the border-collision bifurcation are identified in the discontinuous map, which is employed to understand the experimentally observed period increment sequence. The simple discontinuous map is of practical importance in the modeling of collective behaviours of neural populations like synchronization in large neural circuits.
Keywords:  period-adding bifurcation      border-collision bifurcation      discontinuous maps      neural bursting pattern  
Received:  30 December 2009      Revised:  24 January 2010      Accepted manuscript online: 
PACS:  87.19.L- (Neuroscience)  
  87.19.R- (Mechanical and electrical properties of tissues and organs)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 10774088, 10772101, 30770701 and 10875076) and the Fundamental Research Funds for the Central Universities (Grant No. GK200902025).

Cite this article: 

Mo Juan(莫娟), Li Yu-Ye(李玉叶), Wei Chun-Ling(魏春玲), Yang Ming-Hao(杨明浩), Gu Hua-Guang(古华光), Qu Shi-Xian(屈世显), and Ren Wei(任维) Interpreting a period-adding bifurcation scenario in neural bursting patterns using border-collision bifurcation in a discontinuous map of a slow control variable 2010 Chin. Phys. B 19 080513

[1] Rachwalska M and Kawczy'nski A L 2001 J. Phys. Chem. A 105 7885
[2] Izhikevich E M 2000 Int. J. Bifur. Chaos 10 1171
[3] Yang M H, An S C, Gu H G, Liu Z Q and Ren W 2006 NeuroReport 17 995
[4] Braun H A, Wissing H, Schddotafer K and Hirsch M C 1994 em Nature 367 270
[5] Chay T R 1985 Physica D 16 233
[6] Fan Y S and Chay T R 1994 Biol. Cybern. 171 417
[7] Chay T R and Fan Y S 1995 Int. J. Bifur. Chaos 5 595
[8] Hindmarsh J L and Rose R M 1984 Proc. R. Soc. London Ser. B 221 87
[9] Holden A V and Fan Y S 1992 Chaos, Solitons and Fractals 2 583
[10] Fan Y S and Holden A V 1993 Chaos, Solitons and Fractals 3 439
[11] Terman D 1992 J. Nonlinear Sci. 2 135
[12] Wu S G and He D R 2001 Commun. Theor. Phys. 35 275
[13] Wu S G and He D R 2001 J. Phys. Soc. Jpn. 70 69
[14] Rinzel J and Lee Y S 1987 J. Math. Biol. 25 653
[15] Del Negro C A, Hsiao C F, Chandler S H and Garfinkel A 1998 em Biophys. J. 75 174
[16] Shilnikov A and Cymbalyuk G 2005 Phys. Rev. Lett. 94 048101
[17] Channell P, Cymbalyuk G and Shilnikov A 2007 Phys. Rev. Lett. 98 134101
[18] Ren W, Hu S J, Zhang B J, Wang F Z, Gong Y F and Xu J X 1997 em Int. J. Bifur. Chaos 7 1867
[19] Xu J X, Gong Y F and Ren W 1997 Physica D 100 212
[20] Li L, Gu H G, Yang M H, Liu Z Q and Ren W 2004 Int. J. Bifur. Chaos 14 1813
[21] Gu H G, Yang M H, Li L, Liu Z Q and Ren W 2003 Phys. Lett. A 319 89
[22] Gu H G, Yang M H, Li L, Ren W and Lu Q S 2007 Dyn. Contin. Discr. Impul. Syst. (Series B: Applications & Algorithms) 14 6
[23] Yang M H, Gu H G, Li L, Liu Z Q and Ren W 2003 NeuroReport 14 2153
[24] Ren W, Gu H G, Jian Z, Lu Q S and Yang M H 2001 NeuroReport 12 2121
[25] Gu H G, Ren W, Lu Q S, Wu S G, Yang M H and Chen W J 2001 Phys. Lett. A 285 63
[26] Yang M H, Li L, Liu Z Q, Liu H J, Xu Y L, Gu H G and Ren W 2009 Int. J. Bifur. Chaos 19 453
[27] Wu X B, Mo J, Yang M H, Zheng Q H, Gu H G and Ren W 2008 Chin. Phys. Lett. 25 2799
[28] Zheng Q H, Liu Z Q, Yang M H, Wu X B, Gu H G and Ren W 2009 em Phys. Lett. A 373 540
[29] Yang Z Q, Lu Q S and Li L 2006 Chaos, Solitons and Fractals 27 689
[30] Duan L X, Lu Q S and Wang Q Y 2008 Neurocomputing 72 341
[31] Coombes S and Osbaldestin A H 2000 Phys. Rev. E 62 4057
[32] Medvedev G S 2005 Physica D 202 37
[33] Douglass J K, Wilkens L, Pantazelou E and Moss F 1993 Nature 365 337
[34] Medvedev G S 2006 Phys. Rev. Lett. 97 048102
[35] Hitczenko P and Medvedev G S 2009 SIAM J. Appl. Math. 69 1359
[36] Bressloff P C and Stark J 1990 Phys. Lett. A 150 187
[37] Christiansen B, He D R, Habip S, Bauer M and Krueger U 1992 Phys. Rev. A 45 8450
[38] Nusse H E and Yorke J A 1992 Physica D 57 39
[39] Nusse H E, Ott E and Yorke J A 1994 Phys. Rev. E 49 1073
[40] Nusse H E and Yorke J A 1995 Int. J. Bifur. Chaos 5 189
[41] Qu S X, Wu S G and He D R 1997 Phys. Lett. A 231 152
[42] Qu S X, Wu S G and He D R 1998 Phys. Rev. E 57 402
[43] Bernardo M Di, Feigin M I, Hogan S J and Homer M E 1999 Chaos, Solitons and Fractals 10 1881
[44] Jain P and Banerjee S 2003 Int. J. Bifur. Chaos 13 3341
[45] Sharkovsky A N and Chua L Q 1993 IEEE Trans. Circuit Sys. I 40 722
[46] Halse C, Homer M and Bernardo M Di 2003 Chaos, Solitons and Fractals 18 953
[47] Belykh V N and Belykh I V 2000 Eur. Phys. J. E 3 205
[48] Koll'ar L E, St'ep'an G and Turi J 2004 Int. J. Bifur. Chaos 14 2341
[49] Avrutin V and Schanz M 2004 Phys. Rev. E 70 026222
[50] Avrutin V and Schanz M 2005 Int. J. Bifur. Chaos 15 1267
[51] Hogan S J, Higham L and Griffin T C L 2007 Proc. R. Soc. A 463 49
[52] Dutta P S, Routroy B, Banerjee S and Alam S S 2008 Nonlinear. Dyn. 53 369
[53] Avrutin V, Schanz M and Banerjee S 2007 Phys. Rev. E 75 066205
[54] Mannella R and Palleschi V 1989 Phys. Rev. A 40 3381
[55] Ni F, Xu W, Fang T and Yue X L 2010 Chin. Phys. B 19 010510
[56] Feng J Q, Xu W and Niu Y J 2010 Acta Phys. Sin. 59 157 (in Chinese)
[1] Epilepsy dynamics of an astrocyte-neuron model with ammonia intoxication
Zhixuan Yuan(袁治轩), Mengmeng Du(独盟盟), Yangyang Yu(于羊羊), and Ying Wu(吴莹). Chin. Phys. B, 2023, 32(2): 020502.
[2] Effect of astrocyte on synchronization of thermosensitive neuron-astrocyte minimum system
Yi-Xuan Shan(单仪萱), Hui-Lan Yang(杨惠兰), Hong-Bin Wang(王宏斌), Shuai Zhang(张帅), Ying Li(李颖), and Gui-Zhi Xu(徐桂芝). Chin. Phys. B, 2022, 31(8): 080507.
[3] Simulation of the physical process of neural electromagnetic signal generation based on a simple but functional bionic Na+ channel
Fan Wang(王帆), Jingjing Xu(徐晶晶), Yanbin Ge(葛彦斌), Shengyong Xu(许胜勇),Yanjun Fu(付琰军), Caiyu Shi(石蔡语), and Jianming Xue(薛建明). Chin. Phys. B, 2022, 31(6): 068701.
[4] Long range electromagnetic field nature of nerve signal propagation in myelinated axons
Qing-Wei Zhai(翟卿伟), Kelvin J A Ooi(黄健安), Sheng-Yong Xu(许胜勇), and C K Ong(翁宗经). Chin. Phys. B, 2022, 31(3): 038701.
[5] Computational model investigating the effect of magnetic field on neural-astrocyte microcircuit
Li-Cong Li(李利聪), Jin Zhou(周瑾), Hong-Ji Sun(孙洪吉), Peng Xiong(熊鹏), Hong-Rui Wang(王洪瑞), Xiu-Ling Liu(刘秀玲), and Chang-Yong Wang(王常勇). Chin. Phys. B, 2021, 30(6): 068702.
[6] An electromagnetic view of relay time in propagation of neural signals
Jing-Jing Xu(徐晶晶), San-Jin Xu(徐三津), Fan Wang(王帆), and Sheng-Yong Xu(许胜勇). Chin. Phys. B, 2021, 30(2): 028701.
[7] A synaptic transistor with NdNiO3
Xiang Wang(汪翔), Chen Ge(葛琛), Ge Li(李格), Er-Jia Guo(郭尔佳), Meng He(何萌), Can Wang(王灿), Guo-Zhen Yang(杨国桢), Kui-Juan Jin(金奎娟). Chin. Phys. B, 2020, 29(9): 098101.
[8] Dynamical response of a neuron-astrocyte coupling system under electromagnetic induction and external stimulation
Zhi-Xuan Yuan(袁治轩), Pei-Hua Feng(冯沛华), Meng-Meng Du(独盟盟), Ying Wu(吴莹). Chin. Phys. B, 2020, 29(3): 030504.
[9] Astrocyte and ions metabolism during epileptogenesis: A review for modeling studies
Meng-Meng Du(独盟盟), Jia-Jia Li(李佳佳), Zhi-Xuan Yuan(袁治轩), Yong-Chen Fan(范永晨), Ying Wu(吴莹). Chin. Phys. B, 2020, 29(3): 038701.
[10] Individual identification using multi-metric of DTI in Alzheimer's disease and mild cognitive impairment
Ying-Teng Zhang(张应腾), Shen-Quan Liu(刘深泉). Chin. Phys. B, 2018, 27(8): 088702.
[11] Experimental identification of a comb-shaped chaotic region in multiple parameter spaces simulated by the Hindmarsh–Rose neuron model
Jia Bing (贾冰). Chin. Phys. B, 2014, 23(3): 030505.
[12] Bifurcation diagram globally underpinning neuronal firing behaviors modified by SK conductance
Chen Meng-Jiao (陈梦娇), Ling Heng-Li (令恒莉), Liu Yi-Hui (刘一辉), Qu Shi-Xian (屈世显), Ren Wei (任维). Chin. Phys. B, 2014, 23(2): 028701.
[13] Studies of phase return map and symbolic dynamics in a periodically driven Hodgkin–Huxley neuron
Ding Jiong (丁炯), Zhang Hong (张宏), Tong Qin-Ye (童勤业), Chen Zhuo (陈琢). Chin. Phys. B, 2014, 23(2): 020501.
[14] Erratum to “Coherence resonance in globally coupled neuronal networks with different neuron numbers”
Ning Wei-Lian (宁维莲), Zhang Zheng-Zhen (张争珍), Zeng Shang-You (曾上游), Luo Xiao-Shu (罗晓曙), Hu Jin-Lin (胡锦霖), Zeng Shao-Wen (曾绍稳), Qiu Yi (邱怡), Wu Hui-Si (吴慧思). Chin. Phys. B, 2013, 22(1): 018702.
[15] Spiking sychronization regulated by noise in three types of Hodgkin–Huxley neuronal networks
Zhang Zheng-Zhen (张争珍), Zeng Shang-You (曾上游), Tang Wen-Yan (唐文艳), Hu Jin-Lin (胡锦霖), Zeng Shao-Wen (曾紹稳), Ning Wei-Lian (宁维莲), Qiu Yi (邱怡), Wu Hui-Si (吴慧思). Chin. Phys. B, 2012, 21(10): 108701.
No Suggested Reading articles found!