Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(7): 077201    DOI: 10.1088/1674-1056/19/7/077201
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Coexistence of magnetic and ferroelectric properties in Y0.1Co1.9MnO4

Liu Yi
College of Science, Guizhou University, Guiyang 550025, China
Abstract  The magnetic, conductivity, and dielectric properties have been investigated in single-phase polycrystalline Y0.1Co1.9MnO4. The temperature-dependent magnetisation reveals the ferromagnetic transition in sample at a low temperature (~186 K). Magnetisation as a function of field H (MH loop) indicated the weak ferromagnetism of the sample at room temperature. The constant ε and dielectric loss tgδ measurements represent a ferroelectric phase transition at a higher temperature (~650 K), while the conductivity shows an insulator—metallic transition. The ferroelectric hysterisis loops and capacitance—voltage measurements confirm the ferroelectric nature of the sample at room temperature. The observed ferromagnetism and ferroelectric nature in this material suggests a potential multiferroic application.
Keywords:  magnetic      dielectric      conductivity      spinel oxide  
Accepted manuscript online: 
PACS:  77.80.Bh  
  72.60.+g (Mixed conductivity and conductivity transitions)  
  75.60.Ej (Magnetization curves, hysteresis, Barkhausen and related effects)  
  71.30.+h (Metal-insulator transitions and other electronic transitions)  
  77.22.Gm (Dielectric loss and relaxation)  
  77.84.Bw (Elements, oxides, nitrides, borides, carbides, chalcogenides, etc.)  
Fund: Project supported by the Doctorial Start-up Fund of Guizhou University of China (Grant No. 2006/Z065020).

Cite this article: 

Liu Yi Coexistence of magnetic and ferroelectric properties in Y0.1Co1.9MnO4 2010 Chin. Phys. B 19 077201

[1] Schmid H 1994 Ferroelectrics 162 317
[2] Eerenstein W, Mathur N D and Scott J F 2006 Nature 442 759
[3] Kimura T, Goto T, Shintani H, Ishizaka K, Arima T and Tokura Y 2003 Nature 426 55
[4] Goto T, Kimura T, Lawes G, Ramirez A P and Tokura Y 2004 Phys. Rev. Lett. 92 257201
[5] Zhang Y, Deng C Y, Ma J, Lin Y H and Nan C W 2008 Chin. Phys. B 17 3910
[6] Feng H J and Liu F M 2009 Chin. Phys. B 18 2487
[7] Fiebig M 2005 J. Phys. D 38 R123
[8] Wang J, Neaton J B, Zheng H, Nagarajan V, Ogale S B, Liu B, Viehland D, Vaithyanathan V, Schlom DG, Waghmare U V, Spaldin N A, Rabe K M, Wuttig M and Ramesh R 2005 Science 299 1719
[9] Rajeevan N E, Pradyumnan P P, Kumar R, Shukla D K, Kumar S, Singh A K, Patnaik S, Arora S K and Shvets I V 2008 Appl. Phys. Lett. 92 102910
[10] Rajeevan N E, Kumar R, Shukla D K, Pradyumnan P P, Arora S K and Shvets I V 2009 Mater. Sci. Eng. B 163 48
[11] Massaroti V, Capsoni D, Bini M and Chiodelli G 1997 J. Solid State Chem. 131 94
[12] Seshadri R and Hill N A 2001 Chem. Mater. 13 2892
[13] Cho D Y, Kim J Y, Park B G, Rho K J, Park J H, Noh H J, Kim B J, Oh S J, Park H M, Ahn J S, Ishibashi H, Cheong S W, Lee J H, Murugavel P, Noh T W, Tanaka A and Jo T 2007 Phys. Rev. Lett. 98 217601
[14] van Aken B B, Palstra T T M, Filipetti A and Spaldin N A 2004 Nat. Mater. 3 164 endfootnotesize
[1] Surface plasmon polaritons induced reduced hacking
Bakhtawar, Muhammad Haneef, and Humayun Khan. Chin. Phys. B, 2021, 30(6): 064215.
[2] Magnetic shielding property for cylinder with circular, square, and equilateral triangle holes
Si-Yuan Hao(郝思源), Xiao-Ping Lou(娄小平), Jing Zhu(祝静), Guang-Wei Chen(陈广伟), and Hui-Yu Li(李慧宇). Chin. Phys. B, 2021, 30(6): 060702.
[3] Effects of post-sinter annealing on microstructure and magnetic properties of Nd-Fe-B sintered magnets with Nd-Ga intergranular addition
Jin-Hao Zhu(朱金豪), Lei Jin(金磊), Zhe-Huan Jin(金哲欢), Guang-Fei Ding(丁广飞), Bo Zheng(郑波), Shuai Guo(郭帅), Ren-Jie Chen(陈仁杰), and A-Ru Yan(闫阿儒). Chin. Phys. B, 2021, 30(6): 067503.
[4] Temperature and doping dependent flat-band superconductivity on the Lieb-lattice
Feng Xu(徐峰), Lei Zhang(张磊), and Li-Yun Jiang(姜立运). Chin. Phys. B, 2021, 30(6): 067401.
[5] Unusual electronic structure of Dirac material BaMnSb2 revealed by angle-resolved photoemission spectroscopy
Hongtao Rong(戎洪涛), Liqin Zhou(周丽琴), Junbao He(何俊宝), Chunyao Song(宋春尧), Yu Xu(徐煜), Yongqing Cai(蔡永青), Cong Li(李聪), Qingyan Wang(王庆艳), Lin Zhao(赵林), Guodong Liu(刘国东), Zuyan Xu(许祖彦), Genfu Chen(陈根富), Hongming Weng(翁红明), and Xingjiang Zhou(周兴江). Chin. Phys. B, 2021, 30(6): 067403.
[6] Comprehensive studies on dielectric properties of p-methoxy benzylidene p-decyl aniline with function of temperature and frequency in planar geometry: A potential nematic liquid crystal for display devices
Pankaj Kumar Tripathi, Kunwar Vikram, Mithlesh Tiwari, and Ajay Shriram. Chin. Phys. B, 2021, 30(6): 064208.
[7] Computational model investigating the effect of magnetic field on neural-astrocyte microcircuit
Li-Cong Li(李利聪), Jin Zhou(周瑾), Hong-Ji Sun(孙洪吉), Peng Xiong(熊鹏), Hong-Rui Wang(王洪瑞), Xiu-Ling Liu(刘秀玲), and Chang-Yong Wang(王常勇). Chin. Phys. B, 2021, 30(6): 068702.
[8] High-pressure elastic anisotropy and superconductivity of hafnium: A first-principles calculation
Cheng-Bin Zhang(张成斌), Wei-Dong Li(李卫东), Ping Zhang(张平), and Bao-Tian Wang(王保田). Chin. Phys. B, 2021, 30(5): 056202.
[9] Absence of magnetic order in dichloro [1,2-bis (diphenylphosphino) ethane] nickel2 + single crystal
Shuaiqi Ma(马帅奇), Linlin An(安琳琳), and Xiangde Zhu(朱相德). Chin. Phys. B, 2021, 30(5): 057501.
[10] A modified analytical model of the alkali-metal atomic magnetometer employing longitudinal carrier field
Chang Chen(陈畅), Yi Zhang(张燚), Zhi-Guo Wang(汪之国), Qi-Yuan Jiang(江奇渊), Hui Luo(罗晖), and Kai-Yong Yang(杨开勇). Chin. Phys. B, 2021, 30(5): 050707.
[11] Magnetization and magnetic phase diagrams of a spin-1/2 ferrimagnetic diamond chain at low temperature
Tai-Min Cheng(成泰民), Mei-Lin Li(李美霖), Zhi-Rui Cheng(成智睿), Guo-Liang Yu(禹国梁), Shu-Sheng Sun(孙树生), Chong-Yuan Ge(葛崇员), and Xin-Xin Zhang(张新欣). Chin. Phys. B, 2021, 30(5): 057503.
[12] Effect of hydrogen plasma implantation on the micro-structure and magnetic properties of hcp-Co8057Fe4Ir16 thin films
Hui Wang(王辉), Meng Wu(吴猛), Haiping Zhou(周海平), Bo Zhang(张博), Shixin Hu(胡世欣), Tianyong Ma(马天勇), Zhiwei Li(李志伟), Liang Qiao(乔亮), Tao Wang(王涛), and Fashen Li(李发伸). Chin. Phys. B, 2021, 30(5): 057505.
[13] Attenuation characteristics of obliquely incident electromagnetic wave in weakly ionized dusty plasma based on modified Bhatnagar-Gross-Krook collision model
Zhaoying Wang(王召迎), Lixin Guo(郭立新), and Jiangting Li(李江挺). Chin. Phys. B, 2021, 30(4): 045203.
[14] Nodal superconducting gap in LiFeP revealed by NMR: Contrast with LiFeAs
A F Fang(房爱芳), R Zhou(周睿), H Tukada, J Yang(杨杰), Z Deng(邓正), X C Wang(望贤成) , C Q Jin(靳常青), and Guo-Qing Zheng(郑国庆). Chin. Phys. B, 2021, 30(4): 047403.
[15] Spin correlations in the S=1 armchair chain Ni2NbBO6 as seen from NMR
Kai-Yue Zeng(曾凯悦), Long Ma(马龙), Long-Meng Xu(徐龙猛), Zhao-Ming Tian(田召明), Lang-Sheng Ling(凌浪生), and Li Pi(皮雳). Chin. Phys. B, 2021, 30(4): 047503.
No Suggested Reading articles found!