Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(7): 077103    DOI: 10.1088/1674-1056/19/7/077103
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Electronic band transformation from indirect gap to direct gap in Si—H compound

Ding Jian-Ninga, Yuan Ning-Yia, Wang Jun-Xiongb, Kan Biaob, Chen Xiao-Shuangc
a Center for Low-Dimensional Materials, Micro-Nano Devices and System, Jiangsu Polytechnic University, Changzhou 213164, China;Center for Micro/Nano Science and Technology, Jiangsu University, Zhenjiang 212013, China;Key Laboratory of New Energy Source, Cha; b Center for Micro/Nano Science and Technology, Jiangsu University, Zhenjiang 212013, China; c National Laboratory of Infrared Physics, Shanghai Institute for Technical Physics, Chinese Academy of Sciences, Shanghai 200083, China
Abstract  The electronic band structures of periodic models for Si—H compounds are investigated by the density functional theory. Our results show that the Si—H compound changes from indirect-gap semiconductor to direct-gap semiconductor with the increase of H content. The density of states, the partial density of states and the atomic charge population are examined in detail to explore the origin of this phenomenon. It is found that the Si—Si bonds are affected by H atoms, which results in the electronic band transformation from indirect gap to direct gap. This is confirmed by the nearest neighbour semi-empirical tight-binding (TB) theory.
Keywords:  band structure      density functional theory      tight-binding calculation      Si—H compounds     
Published:  15 July 2010
PACS:  71.20.Ps (Other inorganic compounds)  
  71.15.Mb (Density functional theory, local density approximation, gradient and other corrections)  
  71.15.Ap (Basis sets (LCAO, plane-wave, APW, etc.) and related methodology (scattering methods, ASA, linearized methods, etc.))  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 50775101), the New Century Excellent Talents (Grant No. NCET-04-0515), and the Jiangsu Provincial Science and Technology Supporting Project, China (Grant No. BE2008030), Qing Lan Project (2008-04), Jiangsu University Natural Science Foundation of China (Grant No. 07KJB430023).

Cite this article: 

Ding Jian-Ning, Wang Jun-Xiong, Yuan Ning-Yi, Kan Biao, Chen Xiao-Shuang Electronic band transformation from indirect gap to direct gap in Si—H compound 2010 Chin. Phys. B 19 077103

[1] Bustarret E, Marcenta C, Achatz P, Kacmarcik J, Lévy F, Huxley A, Ortéga L, Débarre D and Bohlmer J 2006 Nature 444 465
[2] Canham L T 1990 Appl. Phys. Lett. 57 1046
[3] Takagi H, Ogawa H, Yamazaki Y, Ishizaki A and Nakagiri T 1990 Appl. Phys. Lett. 56 2379
[4] Ying M J, Zhang P and Du X L 2009 Chin. Phys. B 18 275
[5] Liu Y Z and Luo C L 2004 Acta Phys. Sin. 53 592 (in Chinese)
[6] Green M A, Zhao J, Wang A, Reece P J and Gal M 2001 Nature 412 805
[7] Ng W L, Lourenco M A, Gwilliam R M, Ledain S, Shao G and Homewood K P 2001 Nature 410 192
[8] Hirschman K D, Tsybeskov L, Duttagupta S P and Fauchet P M 1996 Nature 384 338
[9] Almeida V R, Barrios C A, Panepucci R R and Lipson M 2004 Nature 431 1081
[10] Hong K H, Jongseob K, Lee S H and Shin J K 2008 Nano Letters 8 1335
[11] Boland J J 1990 Phys. Rev. Lett. 65 3325
[12] Oura K, Lifshits V G, Saranin A A, Zotov A V and Katayama M 1999 Surf. Sci. Rep. 35 1
[13] Derycke V, Soukiassian P G, Amy F, Chabal Y J, Angelo M D, Enriquez H B and Silly M G 2003 Nat. Mater. 2 253
[14] Amy F and Chabal Y J 2003 J. Chem. Phys. 119 6201
[15] Soukiassian P G and Enriquez H B 2004 J. Phys.: Condens. Matter 16 1611
[16] Segall M D, Lindan P J D, Probert M J, Pickard C J, Hasnip P J, Clark S J and Payne M C 2002 Phys. Condens. Matter 14 2717
[17] Perdew J P, Chevary J A, Vosko S H, Jackson K A, Pederson M R, Singh D J and Fiolhais C 1992 Phys. Rev. B 46 6671
[18] Vanderbilt D 1990 Phys. Rev. B 41 7892
[19] Monkhorst H J and Pack J D 1976 Phys. Rev. B 13 5188
[20] Lee S, Oyafuso F, Allmen P V and Klimeck G 2004 Phys. Rev. B 69 045316
[21] Mulliken R S 1955 J. Chem. Phys. 23 1833
[22] Slater J C and Koster G F 1954 Phys. Rev. 94 1498
[23] Vogl P, Hjalmarson H P and Dow J D 1983 J. Phys. Chem. Solids. 44 365
[24] Boykin T B 1997 Phys. Rev. B 56 9613
[25] Boykin T B, Klimeck G and Oyafuso F 2004 Phys. Rev. B 69 115201
[26] Li Q M and Biswas R 1994 Phys. Rev. B 50 18090
[27] Kim E, Lee Y H and Lee J M 1994 J. Phys.: Condens. Matter. 6 9561
[28] Wang J, Rahman A, Ghosh A, Klimeck G and Lundstrom M 2005 Appl. Phys. Lett. 86 093113 endfootnotesize
[1] Two ultra-stable novel allotropes of tellurium few-layers
Changlin Yan(严长林), Cong Wang(王聪), Linwei Zhou(周霖蔚), Pengjie Guo(郭朋杰), Kai Liu(刘凯), Zhong-Yi Lu(卢仲毅), Zhihai Cheng(程志海), Yang Chai(柴扬), Anlian Pan(潘安练), Wei Ji(季威). Chin. Phys. B, 2020, 29(9): 097103.
[2] Vanadium based XVO3 (X=Na, K, Rb) as promising thermoelectric materials: First-principle DFT calculations
N A Noor, Nosheen Mushahid, Aslam Khan, Nessrin A. Kattan, Asif Mahmood, Shahid M. Ramay. Chin. Phys. B, 2020, 29(9): 097101.
[3] Epitaxial fabrication of monolayer copper arsenide on Cu(111)
Shuai Zhang(张帅), Yang Song(宋洋), Jin Mei Li(李金梅), Zhenyu Wang(王振宇), Chen Liu(刘晨), Jia-Ou Wang(王嘉鸥), Lei Gao(高蕾), Jian-Chen Lu(卢建臣), Yu Yang Zhang(张余洋), Xiao Lin(林晓), Jinbo Pan(潘金波), Shi Xuan Du(杜世萱), Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2020, 29(7): 077301.
[4] Construction of monolayer IrTe2 and the structural transition under low temperatures
Aiwei Wang(王爱伟), Ziyuan Liu(刘子媛), Jinbo Pan(潘金波), Qiaochu Li(李乔楚), Geng Li(李更), Qing Huan(郇庆), Shixuan Du(杜世萱), Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2020, 29(7): 078102.
[5] A theoretical study on chemical ordering of 38-atom trimetallic Pd-Ag-Pt nanoalloys
Songül Taran, Ali Kemal Garip, Haydar Arslan. Chin. Phys. B, 2020, 29(7): 077801.
[6] Structural evolution and magnetic properties of ScLin (n=2-13) clusters: A PSO and DFT investigation
Lu Li(栗潞), Xiu-Hua Cui(崔秀花), Hai-Bin Cao(曹海宾), Yi Jiang(姜轶), Hai-Ming Duan(段海明), Qun Jing(井群), Jing Liu(刘静), Qian Wang(王倩). Chin. Phys. B, 2020, 29(7): 077101.
[7] Gd impurity effect on the magnetic and electronic properties of hexagonal Sr ferrites: A case study by DFT
Masomeh Taghipour, Mohammad Yousefi, Reza Fazaeli, Masoud Darvishganji. Chin. Phys. B, 2020, 29(7): 077505.
[8] Relationship between ESIPT properties and antioxidant activities of 5-hydroxyflavone derivates
Chaofan Sun(孙朝范), Bifa Cao(曹必发), Hang Yin(尹航), Ying Shi(石英). Chin. Phys. B, 2020, 29(5): 058202.
[9] Ab initio study of structural, electronic, thermo-elastic and optical properties of Pt3Zr intermetallic compound
Wahiba Metiri, Khaled Cheikh. Chin. Phys. B, 2020, 29(4): 047101.
[10] Electronic structure and spatial inhomogeneity of iron-based superconductor FeS
Chengwei Wang(王成玮), Meixiao Wang(王美晓), Juan Jiang(姜娟), Haifeng Yang(杨海峰), Lexian Yang(杨乐仙), Wujun Shi(史武军), Xiaofang Lai(赖晓芳), Sung-Kwan Mo, Alexei Barinov, Binghai Yan(颜丙海), Zhi Liu(刘志), Fuqiang Huang(黄富强), Jinfeng Jia(贾金峰), Zhongkai Liu(柳仲楷), Yulin Chen(陈宇林). Chin. Phys. B, 2020, 29(4): 047401.
[11] Theoretical study on the relationship between the position of the substituent and the ESIPT fluorescence characteristic of HPIP
Xin Zhang(张馨), Jian-Hui Han(韩建慧), You Li(李尤), Chao-Fan Sun(孙朝范), Xing Su(苏醒), Ying Shi(石英), Hang Yin(尹航). Chin. Phys. B, 2020, 29(3): 038201.
[12] Computational screening of doping schemes forLiTi2(PO4)3 as cathode coating materials
Yu-Qi Wang(王宇琦), Xiao-Rui Sun(孙晓瑞), Rui-Juan Xiao(肖睿娟), Li-Quan Chen(陈立泉). Chin. Phys. B, 2020, 29(3): 038202.
[13] Theoretical investigations of collision dynamics of cytosine by low-energy (150-1000 eV) proton impact
Zhi-Ping Wang(王志萍), Feng-Shou Zhang(张丰收), Xue-Fen Xu(许雪芬), Chao-Yi Qian(钱超义). Chin. Phys. B, 2020, 29(2): 023401.
[14] Electronic and thermoelectric properties of alkali metal-based perovskites CsYbF3 and RbYbF3
Q Mahmood, N A Noor, T Ghrib, Nessrin A Kattan, Asif Mahmood, and Shahid M Ramay. Chin. Phys. B, 2020, 29(11): 117305.
[15] First-principles study of high performance lithium/sodium storage of Ti3C2T2 nanosheets as electrode materials
Li-Na Bai(白丽娜), Ling-Ying Kong(孔令莹), Jing Wen(温静), Ning Ma(马宁), Hong Gao(高红), Xi-Tian Zhang(张喜田). Chin. Phys. B, 2020, 29(1): 016802.
No Suggested Reading articles found!