Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(3): 037501    DOI: 10.1088/1674-1056/19/3/037501
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Large magnetoresistance in metamagnetic CoMnSi0.88Ge0.12 alloy

Zhang Cheng-Liang(张成亮), Wang Dun-Hui(王敦辉), Cao Qing-Qi(曹庆琪), Xuan Hai-Cheng(轩海成), Ma Sheng-Can(马胜灿), and Du You-Wei(都有为)
National Laboratory of Solid State Microstructures and Key Laboratory of Nanomaterials for Jiangsu Province, Nanjing University, Nanjing 210093, China
Abstract  The magneto-transport properties are investigated in metamagnetic CoMnSi0.88Ge0.12 alloy. By applying a magnetic field or increasing temperature, a metamagnetic phase transition from antiferromagnetic to ferromagnetic is observed in this alloy. Around the metamagnetic phase transition, CoMnSi0.88Ge0.12 alloy exhibits a large and negative magnetoresistance effect (~ 32%) under a magnetic field of 20 kOe (1 Oe = 79.5775 A/m), which is ascribed to the spin-dependent scattering of conduction electrons.
Keywords:  metamagnetic      magnetoresistance  
Received:  24 July 2009      Revised:  14 August 2009      Accepted manuscript online: 
PACS:  72.15.Gd (Galvanomagnetic and other magnetotransport effects)  
  75.50.Ee (Antiferromagnetics)  
  75.50.Cc (Other ferromagnetic metals and alloys)  
  75.30.Kz (Magnetic phase boundaries (including classical and quantum magnetic transitions, metamagnetism, etc.))  
  72.25.Rb (Spin relaxation and scattering)  
  72.15.Eb (Electrical and thermal conduction in crystalline metals and alloys)  
Fund: Project supported by the State Key Program for Basic Research of China (Grant No. 2005CB623605), the National Natural Science Foundation of China (Grant Nos. 50701022 and 50831006) and the Program for New Century Excellent Talents of China (Grant No. NCET-08-0278).

Cite this article: 

Zhang Cheng-Liang(张成亮), Wang Dun-Hui(王敦辉), Cao Qing-Qi(曹庆琪), Xuan Hai-Cheng(轩海成), Ma Sheng-Can(马胜灿), and Du You-Wei(都有为) Large magnetoresistance in metamagnetic CoMnSi0.88Ge0.12 alloy 2010 Chin. Phys. B 19 037501

[1] Baibich M N, Broto J M, Fert A, Naguyen Van Dau F, Petroff F,Etienne P, Creuzet G, Friederich A and Chazelas J 1988 Phys.Rev. Lett. 61 2472
[2] Parkin S S P, Bhadra R and Roche K P 1991 Phys. Rev. Lett. 66 2152
[3] Petroff F, Barthélemy A, Mosca D H, Lottis D K, Fert A,Schroeder P A, Pratt Jr W P and Loloee R 1991 Phys. Rev. B 44 5355
[4] Binasch G, Grünberg P, Saurenbach F and Zinn W 1989 Phys. Rev. B 39 4828
[5] Kunkel H P, Zhou X Z, Stampe P A, Cowen J A and Williams G 1996 Phys. Rev. B 53 15099
[6] Moruzzi V L and Marcus P M 1992 Phys. Rev. B 46 14198
[7] van Dover R B, Gyorgy E M, Cava R J, Krajewski J J, Felder R Jand Peck W F 1993 Phys. Rev. B 47 6134
[8] Zhang S Y, Zhao P, Cheng Z H, Li R W, Sun J R, Zhang H W andShen B G 2001 Phys. Rev. B 64 212404
[9] Zhang Y Q and Zhang Z D 2004 J. Phys. D: Appl.Phys. 37 819
[10] Hu F X, Qian X L, Wang G J, Sun J R, Shen B G, Chen Z H and GaoJ 2005 Chin. Phys. 14 2329
[11] Zhang Q, Li W F, Sun N K, Du J, Li Y B, Li D, Zhang Y Qand Zhang Z D 2008 J. Phys. D: Appl. Phys. 41 125001
[12] Johnson V and Frederick C G 1973 Phys. Stat. Sol. (a) 20 331
[13] Nizio? S, Biń czycka H, Szytu? A, Todorovi? J, Fruchart R,Senateur J P and Fruchart D 1978 Phys. Stat. Sol. (a) 45 591
[14] Niziol S, Zach R, Senateur J P and Beille J 1989 J. Magn.Magn. Mater . 79 333
[15] Niziol S, Fruchart R and Senateur J P 1979 Phys. Stat.Sol. (a) 51 K23
[16] Sandeman K G, Daou R, ?zcan S, Durrell J H, Mathur N D andFray D J 2006 Phys. Rev. B 74 224436
[17] Zhang C L, Wang D H, Cao Q Q, Han Z D, Xuan H C and Du Y W 2009J. Phys. D: Appl. Phys. 42 015007
[18] Havela L, Sechovsky V, Prokes K, Nakotte H, Fujii H and LacerdaA 1996 Physica B 223--224 245
[19] Szytula A, Bazela W and Radenkovic S 1983 J. Magn. Magn.Mater . 38 99
[1] Recent progress on the planar Hall effect in quantum materials
Jingyuan Zhong(钟景元), Jincheng Zhuang(庄金呈), and Yi Du(杜轶). Chin. Phys. B, 2023, 32(4): 047203.
[2] Abnormal magnetoresistance effect in the Nb/Si superconductor-semiconductor heterojunction
Zhi-Wei Hu(胡志伟) and Xiang-Gang Qiu(邱祥冈). Chin. Phys. B, 2023, 32(3): 037401.
[3] Measurement of T wave in magnetocardiography using tunnel magnetoresistance sensor
Zhihong Lu(陆知宏), Shuai Ji(纪帅), and Jianzhong Yang(杨建中). Chin. Phys. B, 2023, 32(2): 020703.
[4] Strain-mediated magnetoelectric control of tunneling magnetoresistance in magnetic tunneling junction/ferroelectric hybrid structures
Wenyu Huang(黄文宇), Cangmin Wang(王藏敏), Yichao Liu(刘艺超), Shaoting Wang(王绍庭), Weifeng Ge(葛威锋), Huaili Qiu(仇怀利), Yuanjun Yang(杨远俊), Ting Zhang(张霆), Hui Zhang(张汇), and Chen Gao(高琛). Chin. Phys. B, 2022, 31(9): 097502.
[5] Analytical formula describing the non-saturating linear magnetoresistance in inhomogeneous conductors
Shan-Shan Chen(陈珊珊), Yang Yang(杨阳), and Fan Yang(杨帆). Chin. Phys. B, 2022, 31(8): 087303.
[6] Spin transport in epitaxial Fe3O4/GaAs lateral structured devices
Zhaocong Huang(黄兆聪), Wenqing Liu(刘文卿), Jian Liang(梁健), Qingjie Guo(郭庆杰), Ya Zhai(翟亚), and Yongbing Xu(徐永兵). Chin. Phys. B, 2022, 31(6): 068505.
[7] Maximum entropy mobility spectrum analysis for the type-I Weyl semimetal TaAs
Wen-Chong Li(李文充), Ling-Xiao Zhao(赵凌霄), Hai-Jun Zhao(赵海军),Gen-Fu Chen(陈根富), and Zhi-Xiang Shi(施智祥). Chin. Phys. B, 2022, 31(5): 057103.
[8] Magnetoresistance effect in vertical NiFe/graphene/NiFe junctions
Pei-Sen Li(李裴森), Jun-Ping Peng(彭俊平), Yue-Guo Hu(胡悦国), Yan-Rui Guo(郭颜瑞), Wei-Cheng Qiu(邱伟成), Rui-Nan Wu(吴瑞楠), Meng-Chun Pan(潘孟春), Jia-Fei Hu(胡佳飞), Di-Xiang Chen(陈棣湘), and Qi Zhang(张琦). Chin. Phys. B, 2022, 31(3): 038502.
[9] Large positive magnetoresistance in photocarrier-doped potassium tantalites
Rui-Shu Yang(杨睿姝), Ding-Bang Wang(王定邦), Yang Zhao(赵阳), Shuan-Hu Wang(王拴虎), and Ke-Xin Jin(金克新). Chin. Phys. B, 2022, 31(12): 127302.
[10] Sign reversal of anisotropic magnetoresistance and anomalous thickness-dependent resistivity in Sr2CrWO6/SrTiO3 films
Chunli Yao(姚春丽), Tingna Shao(邵婷娜), Mingrui Liu(刘明睿), Zitao Zhang(张子涛), Weimin Jiang(姜伟民), Qiang Zhao(赵强), Yujie Qiao(乔宇杰), Meihui Chen(陈美慧), Xingyu Chen(陈星宇), Ruifen Dou(窦瑞芬), Changmin Xiong(熊昌民), and Jiacai Nie(聂家财). Chin. Phys. B, 2022, 31(10): 107302.
[11] Observation of quadratic magnetoresistance in twisted double bilayer graphene
Yanbang Chu(褚衍邦), Le Liu(刘乐), Yiru Ji(季怡汝), Jinpeng Tian(田金朋), Fanfan Wu(吴帆帆), Jian Tang(汤建), Yalong Yuan(袁亚龙), Yanchong Zhao(赵岩翀), Xiaozhou Zan(昝晓州), Rong Yang(杨蓉), Kenji Watanabe, Takashi Taniguchi, Dongxia Shi(时东霞), Wei Yang(杨威), and Guangyu Zhang(张广宇). Chin. Phys. B, 2022, 31(10): 107201.
[12] Probing the magnetization switching with in-plane magnetic anisotropy through field-modified magnetoresistance measurement
Runrun Hao(郝润润), Kun Zhang(张昆), Yinggang Li(李迎港), Qiang Cao(曹强), Xueying Zhang(张学莹), Dapeng Zhu(朱大鹏), and Weisheng Zhao(赵巍胜). Chin. Phys. B, 2022, 31(1): 017502.
[13] Negative tunnel magnetoresistance in a quantum dot induced by interplay of a Majorana fermion and thermal-driven ferromagnetic leads
Peng-Bin Niu(牛鹏斌), Bo-Xiang Cui(崔博翔), and Hong-Gang Luo(罗洪刚). Chin. Phys. B, 2021, 30(9): 097401.
[14] Current-dependent positive magnetoresistance inLa0.8Ba0.2MnO3 ultrathin films
Guankai Lin(林冠凯), Haoru Wang(王昊儒), Xuhui Cai(蔡旭晖), Wei Tong(童伟), and Hong Zhu(朱弘). Chin. Phys. B, 2021, 30(9): 097502.
[15] High-resolution angle-resolved photoemission study of large magnetoresistance topological semimetal CaAl4
Xu-Chuan Wu(吴徐传), Shen Xu(徐升), Jian-Feng Zhang(张建丰), Huan Ma(马欢), Kai Liu(刘凯), Tian-Long Xia(夏天龙), and Shan-Cai Wang(王善才). Chin. Phys. B, 2021, 30(9): 097303.
No Suggested Reading articles found!