Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(12): 125201    DOI: 10.1088/1674-1056/19/12/125201

Investigation of fast pitch angle scattering of runaway electrons in the EAST tokamak

Lu Hong-Wei, Hu Li-Qun, Li Ya-Dong, Zhong Guo-Qiang, Lin Shi-Yao, Xu Ping, EAST-Team
Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230030, China
Abstract  This paper reports that an experimental investigation of fast pitch angle scattering (FPAS) of runaway electrons in the EAST tokamak has been performed. From the newly developed infrared detector (HgCdTe) diagnostic system, the infrared synchrotron radiation emitted by relativistic electrons can be obtained as a function of time. The FPAS is analysed by means of the infrared detector diagnostic system and the other correlative diagnostic systems (including electron–cyclotron emission, hard x-ray, neutrons). It is found that the intensity of infrared synchrotron radiation and the electron–cyclotron emission signal increase rapidly at the time of FPAS because of the fast increase of pitch angle and the perpendicular velocity of the energetic runaway electrons. The Parail and Pogutse instability is a possible mechanism for the FPAS.
Keywords:  instability      fast pitch angle scattering      tokamak      runaway electron beam     
Received:  06 December 2009      Published:  15 December 2010
PACS:  52.35.Qz (Microinstabilities (ion-acoustic, two-stream, loss-cone, beam-plasma, drift, ion- or electron-cyclotron, etc.))  
  52.55.Fa (Tokamaks, spherical tokamaks)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 10935004 and 10775041), and partly by JSPS–CAS Core University Program in the field of "Plasma and Nuclear Fusion".

Cite this article: 

Lu Hong-Wei, Hu Li-Qun, Li Ya-Dong, Zhong Guo-Qiang, Lin Shi-Yao, Xu Ping, EAST-Team Investigation of fast pitch angle scattering of runaway electrons in the EAST tokamak 2010 Chin. Phys. B 19 125201

[1] Jaspers R 1995 Relativistic Runaway Electrons in Tokamak Plasma Ph.D. Thesis, Eindhoven University of Technology, The Netherland (ISBN 90-386-0474-2)
[2] Knoepfel H and Spong D A 1979 Nucl. Fusion19 785
[3] Jaspers R, Lopes Cardozo N J and Finken K H 1994 Phys. Rev. Lett.72 4093
[4] Brossier P 1993 Nucl. Fusion18 1069
[5] Jaspers R, Finken K H and Mank G 1993 Nucl. Fusion33 1775
[6] Li E Z, Ling B L and Liu Y 2010 Chin. Phys. B19 035203
[7] Zhang Y P, Yang J W and Liu Y 2009 Chin. Phys. B18 5385
[8] ITER Physics Basis 2007 Nucl. Fusion47 S178
[9] Mikhailovskii A B 1974 Theory of Plasma Instabilities Vol. 1 (New York: Consultans Bureau)
[10] Finken K H, Watkins J G and Rusbuldt D 1990 Nucl. Fusion30 859
[11] Oomens A A M, Ornstein L Th M, Parker R R, Schuller F C and Talor R J 1976 Phys. Rev. Lett.36 255
[12] Schokker B C, de Vries P C, Oomens A A M, Schuller F C, Lopes Cardozo N J and RTP-Team 1994 21st Euro. Conf. on Controlled Fusion and Plasma Physics Montpellier I-286
[13] Lu H W, Hu L Q and Chen Z Y 2008 J. Plasma Phys.74 445
[14] Parail V V and Pogutse O P 1986 Runaway Electrons in a Tokamak, in Reviews of Plasma Physics Vol. 11, ed. Leontovich M A (New York: Consultans Bureau)
[15] Entrop I 1999 Confinement of Relativistic Runaway Electrons in Tokamak Plasmas Ph.D. Thesis, Eindhoven University of Technology, The Netherland (ISBN 90-386-0947-7)
[16] Plyusnin V V 2002 29th EPS Conference on Plasma Phys. and Control Fusion Montreux, 17–21 June 2002 ECA Vol. 26B P-4.097
[17] Alikaev V V, Razumova K A and Sokolov Y A 1975 Plasma Phys. Rep.1 303
[18] Parail V V and Pogutse O P 1978 Nucl. Fusion18 303
[19] Plyusnin V V, Cabral J A C, Figueiredo H and Varandas C A F 2001 28th EPS Conference on Control Fusion and Plasma Phys. Funchal, 18–22 June ECA Vol. 25A pp. 601–604
[20] Thode L E and Suddan R N 1975 Phys. Fluids18 1552
[21] Breizman B N 1990 Collective Interaction of Relativistic Electron Beams with Plasmas, in Reviews of Plasma Physics Vol. 15, ed. Kadomtsev B B (New York: Consultants Bureau)
[22] Kaw P K, Kruer W L, Liu C S and Nishkawa K 1975 Parametric Instabilities in Plasma, in Advances in Plasma Physics Vol. 6, ed. Simon A and Thompson W B (New York: Wiley)
[23] Papadopoulos K 1975 Phys. Fluids18 1769
[24] Chen F F 1984 Introduction to Plasma Physics and Controlled Fusion Vol. 1 (New York: Plenum Press)
[1] Study of optical clocks based on ultracold 171Yb atoms
Di Ai(艾迪), Hao Qiao(谯皓), Shuang Zhang(张爽), Li-Meng Luo(骆莉梦), Chang-Yue Sun(孙常越), Sheng Zhang(张胜), Cheng-Quan Peng(彭成权), Qi-Chao Qi(齐启超), Tao-Yun Jin(金涛韫), Min Zhou(周敏), Xin-Ye Xu(徐信业). Chin. Phys. B, 2020, 29(9): 090601.
[2] Experimental investigation on the properties of liquid film breakup induced by shock waves
Xianzhao Song(宋先钊), Bin Li(李斌), Lifeng Xie(解立峰). Chin. Phys. B, 2020, 29(8): 086201.
[3] A transportable optical lattice clock at the National Time Service Center
De-Huan Kong(孔德欢), Zhi-Hui Wang(王志辉), Feng Guo(郭峰), Qiang Zhang(张强), Xiao-Tong Lu(卢晓同), Ye-Bing Wang(王叶兵), Hong Chang(常宏). Chin. Phys. B, 2020, 29(7): 070602.
[4] Negative bias-induced threshold voltage instability and zener/interface trapping mechanism in GaN-based MIS-HEMTs
Qing Zhu(朱青), Xiao-Hua Ma(马晓华), Yi-Lin Chen(陈怡霖), Bin Hou(侯斌), Jie-Jie Zhu(祝杰杰), Meng Zhang(张濛), Mei Wu(武玫), Ling Yang(杨凌), Yue Hao(郝跃). Chin. Phys. B, 2020, 29(4): 047304.
[5] Dynamics of the plane and solitary waves in a Noguchi network: Effects of the nonlinear quadratic dispersion
S A T Fonkoua, M S Ngounou, G R Deffo, F B Pelap, S B Yamgoue, A Fomethe. Chin. Phys. B, 2020, 29(3): 030501.
[6] Interface coupling effects of weakly nonlinear Rayleigh-Taylor instability with double interfaces
Zhiyuan Li(李志远), Lifeng Wang(王立锋), Junfeng Wu(吴俊峰), Wenhua Ye(叶文华). Chin. Phys. B, 2020, 29(3): 034704.
[7] Nonlinear simulation of multiple toroidal Alfvén eigenmodes in tokamak plasmas
Xiao-Long Zhu(朱霄龙), Feng Wang(王丰), Zheng-Xiong Wang(王正汹). Chin. Phys. B, 2020, 29(2): 025201.
[8] Discharge simulation and volt-second consumption analysis during ramp-up on the CFETR tokamak
Cheng-Yue Liu(刘成岳), Bin Wu(吴斌), Jin-Ping Qian(钱金平), Guo-Qiang Li(李国强), Ya-Wei Hou(侯雅巍), Wei Wei(韦维), Mei-Xia Chen(陈美霞), Ming-Zhun Lei(雷明准), Yong Guo(郭勇). Chin. Phys. B, 2020, 29(2): 025202.
[9] The E×B drift instability in Hall thruster using 1D PIC/MCC simulation
Zahra Asadi, Mehdi Sharifian, Mojtaba Hashemzadeh, Mahmood Borhani Zarandi, Hamidreza Ghomi Marzdashti. Chin. Phys. B, 2020, 29(2): 025204.
[10] Weakly nonlinear multi-mode Bell-Plesset growth in cylindrical geometry
Hong-Yu Guo(郭宏宇), Tao Cheng(程涛), and Ying-Jun Li(李英骏). Chin. Phys. B, 2020, 29(11): 115202.
[11] Jeans gravitational instability with $\bm\kappa$-deformed Kaniadakis distribution in Eddington-inspired Born-Infield gravity
Wei-Heng Yang(杨伟恒), Yu-Zhen Xiong(熊玉珍), Hui Chen(陈辉), and San-Qiu Liu(刘三秋)$. Chin. Phys. B, 2020, 29(11): 110401.
[12] Discrete modulational instability and bright localized spin wave modes in easy-axis weak ferromagnetic spin chains involving the next-nearest-neighbor coupling
Jiayu Xie(谢家玉), Zhihao Deng(邓志豪), Xia Chang(昌霞), Bing Tang(唐炳). Chin. Phys. B, 2019, 28(7): 077501.
[13] Investigation of convergent Richtmyer-Meshkov instability at tin/xenon interface with pulsed magnetic driven imploding
Shaolong Zhang(张绍龙), Wei Liu(刘伟), Guilin Wang(王贵林), Zhengwei Zhang(章征伟), Qizhi Sun(孙奇志), Zhaohui Zhang(张朝辉), Jun Li(李军), Yuan Chi(池原), Nanchuan Zhang(张南川). Chin. Phys. B, 2019, 28(4): 044702.
[14] Effect of edge transport barrier on required toroidal field for ignition of elongated tokamak
Cui-Kun Yang(杨翠坤), Ming-Sheng Chu(朱名盛), Wen-Feng Guo(郭文峰). Chin. Phys. B, 2019, 28(4): 045202.
[15] Numerical study on magneto-Rayleigh-Taylor instabilities for thin liner implosions on the primary test stand facility
Xiao-Guang Wang(王小光), Shun-Kai Sun(孙顺凯), De-Long Xiao(肖德龙), Guan-Qiong Wang(王冠琼), Yang Zhang(张扬), Shao-Tong Zhou(周少彤), Xiao-Dong Ren(任晓东), Qiang Xu(徐强), Xian-Bin Huang(黄显宾), Ning Ding(丁宁), Xiao-Jian Shu(束小建). Chin. Phys. B, 2019, 28(3): 035201.
No Suggested Reading articles found!