Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(12): 124601    DOI: 10.1088/1674-1056/19/12/124601
CLASSICAL AREAS OF PHENOMENOLOGY Prev   Next  

Symmetry and conserved quantities of discrete generalized Birkhoffian system

Zhang Ke-Jun(张克军), Fang Jian-Hui(方建会), and Li Yan(李燕)
College of Physics Science and Technology, China University of Petroleum, Dongying 257061, China
Abstract  The Noether symmetry, the Mei symmetry and the conserved quantities of discrete generalized Birkhoffian system are studied in this paper. Using the difference discrete variational approach, the difference discrete variational principle of discrete generalized Birkhoffian system is derived. The discrete equations of motion of the system are established. The criterion of Noether symmetry and Mei symmetry of the system is given. The discrete Noether and Mei conserved quantities and the conditions for their existence are obtained. Finally, an example is given to show the applications of the results.
Keywords:  discrete generalized Birkhoffian system      Noether symmetry      Mei symmetry      conserved quantity  
Received:  30 March 2010      Revised:  02 June 2010      Accepted manuscript online: 
PACS:  46.15.Cc (Variational and optimizational methods)  
Fund: Project supported by the Fundamental Research Funds for the Central Universities of China (Grant No. 09CX04018A).

Cite this article: 

Zhang Ke-Jun(张克军), Fang Jian-Hui(方建会), and Li Yan(李燕) Symmetry and conserved quantities of discrete generalized Birkhoffian system 2010 Chin. Phys. B 19 124601

[1] Noether A E 1918 Nachr. Akad. Wiss. Göttingen Math. Phys. 2 235
[2] Lutzky M 1979 J. Phys. A: Math. Gen. 12 973
[3] Mei F X 2000 J. Beijing Inst. Tech. 9 120
[4] Mei F X 2001 Chin. Phys. 10 177
[5] Zhang H B and Chen L Q 2005 J. Phys. Soc. Jpn. 74 905
[6] Fang J H, Peng Y and Liao Y P 2005 Acta Phys. Sin. 54 496 (in Chinese)
[7] Qiao Y F and Zhao S H 2006 Acta Phys. Sin. 55 499 (in Chinese)
[8] Liu H J, Fu J L and Tang Y F 2007 Chin. Phys. 16 599
[9] Luo S K 2007 Chin. Phys. 16 3182
[10] Xie J F, Gang T Q and Mei F X 2008 Chin. Phys. B 17 390
[11] Jia L Q, Xie J F and Luo S K 2008 Chin. Phys. B 17 1560
[12] Mei F X, Xie J F and Gang T Q 2008 Commun. Theor. Phys. 49 1413
[13] Mei F X 1999 Applications of Lie Groups and Lie Algebras to Constrained Mechanical Systems (Beijing: Science Press) (in Chinese)
[14] Mei F X 2004 Symmetries and Conserved Quantities of Constrained Mechanical Systems (Beijing: Beijing Institute of Technology Press) (in Chinese)
[15] Luo S K and Zhang Y F 2008 Advances in the Study of Dynamics of Constrained System (Beijing: Science Press) (in Chinese)
[16] Zhang H B, Chen L Q and Liu R W 2005 Chin. Phys. 14 238
[17] Zhang H B, Chen L Q, Gu S L and Liu C Z 2007 Chin. Phys. 16 582
[18] Fu J L, Dai G D, Salvador J and Tang Y F 2007 Chin. Phys. 16 570
[19] Shi S Y, Fu J L and Chen L Q 2008 Chin. Phys. B 17 385
[20] Shi S Y, Chen L Q and Fu J L 2008 Commun. Theor. Phys. 50 607
[21] Lu K, Fang J H, Zhang M J and Wang P 2009 Acta Phys. Sin. 58 7421 (in Chinese)
[22] Guo H Y, Li Y Q, Wu K and Wang S K 2002 Commun. Theor. Phys. 37 1
[23] Guo H Y, Li Y Q, Wu K and Wang S K 2002 Commun. Theor. Phys. 37 129
[24] Guo H Y, Li Y Q, Wu K and Wang S K 2002 Commun. Theor. Phys. 37 257
[25] Guo H Y and Wu K 2003 J. Math. Phys. 44 5978
[26] Luo X D, Guo H Y, Li Y Q and Wu K 2004 Commun. Theor. Phys. 42 443
[1] Exploring fundamental laws of classical mechanics via predicting the orbits of planets based on neural networks
Jian Zhang(张健), Yiming Liu(刘一鸣), and Zhanchun Tu(涂展春). Chin. Phys. B, 2022, 31(9): 094502.
[2] Noether symmetry and conserved quantity for dynamical system with non-standard Lagrangians on time scales
Jing Song(宋静), Yi Zhang(张毅). Chin. Phys. B, 2017, 26(8): 084501.
[3] Non-Noether symmetries of Hamiltonian systems withconformable fractional derivatives
Lin-Li Wang (王琳莉) and Jing-Li Fu(傅景礼). Chin. Phys. B, 2016, 25(1): 014501.
[4] Symmetries and variational calculationof discrete Hamiltonian systems
Xia Li-Li (夏丽莉), Chen Li-Qun (陈立群), Fu Jing-Li (傅景礼), Wu Jing-He (吴旌贺). Chin. Phys. B, 2014, 23(7): 070201.
[5] Noether symmetry and conserved quantity for a Hamilton system with time delay
Jin Shi-Xin (金世欣), Zhang Yi (张毅). Chin. Phys. B, 2014, 23(5): 054501.
[6] Noether's theorems of a fractional Birkhoffian system within Riemann–Liouville derivatives
Zhou Yan (周燕), Zhang Yi (张毅). Chin. Phys. B, 2014, 23(12): 124502.
[7] Lie symmetry theorem of fractional nonholonomic systems
Sun Yi (孙毅), Chen Ben-Yong (陈本永), Fu Jing-Li (傅景礼). Chin. Phys. B, 2014, 23(11): 110201.
[8] Mei symmetry and conservation laws of discrete nonholonomic dynamical systems with regular and irregular lattices
Zhao Gang-Ling (赵纲领), Chen Li-Qun (陈立群), Fu Jing-Li (傅景礼), Hong Fang-Yu (洪方昱). Chin. Phys. B, 2013, 22(3): 030201.
[9] Noether symmetry and conserved quantities of the analytical dynamics of a Cosserat thin elastic rod
Wang Peng (王鹏), Xue Yun (薛纭), Liu Yu-Lu (刘宇陆). Chin. Phys. B, 2013, 22(10): 104503.
[10] Conformal invariance, Noether symmetry, Lie symmetry and conserved quantities of Hamilton systems
Chen Rong (陈蓉), Xu Xue-Jun (许学军). Chin. Phys. B, 2012, 21(9): 094501.
[11] A type of conserved quantity of Mei symmetry of Nielsen equations for a holonomic system
Cui Jin-Chao (崔金超), Han Yue-Lin (韩月林), Jia Li-Qun (贾利群 ). Chin. Phys. B, 2012, 21(8): 080201.
[12] Symmetry of Lagrangians of holonomic nonconservative system in event space
Zhang Bin(张斌), Fang Jian-Hui(方建会), and Zhang Wei-Wei(张伟伟) . Chin. Phys. B, 2012, 21(7): 070208.
[13] Noether conserved quantities and Lie point symmetries for difference nonholonomic Hamiltonian systems in irregular lattices
Xia Li-Li(夏丽莉) and Chen Li-Qun(陈立群) . Chin. Phys. B, 2012, 21(7): 070202.
[14] Mei symmetry and conserved quantities in Kirchhoff thin elastic rod statics
Wang Peng(王鹏), Xue Yun(薛纭), and Liu Yu-Lu(刘宇陆) . Chin. Phys. B, 2012, 21(7): 070203.
[15] Form invariance and approximate conserved quantity of Appell equations for a weakly nonholonomic system
Jia Li-Qun(贾利群), Zhang Mei-Ling(张美玲), Wang Xiao-Xiao(王肖肖), and Han Yue-Lin(韩月林) . Chin. Phys. B, 2012, 21(7): 070204.
No Suggested Reading articles found!