Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(12): 125201    DOI: 10.1088/1674-1056/19/12/125201
PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES Prev   Next  

Investigation of fast pitch angle scattering of runaway electrons in the EAST tokamak

Lu Hong-Wei(卢洪伟), Hu Li-Qun(胡立群), Li Ya-Dong(李亚东), Zhong Guo-Qiang(钟国强), Lin Shi-Yao(林士耀), Xu Ping(许平), and EAST-Team
Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230030, China
Abstract  This paper reports that an experimental investigation of fast pitch angle scattering (FPAS) of runaway electrons in the EAST tokamak has been performed. From the newly developed infrared detector (HgCdTe) diagnostic system, the infrared synchrotron radiation emitted by relativistic electrons can be obtained as a function of time. The FPAS is analysed by means of the infrared detector diagnostic system and the other correlative diagnostic systems (including electron–cyclotron emission, hard x-ray, neutrons). It is found that the intensity of infrared synchrotron radiation and the electron–cyclotron emission signal increase rapidly at the time of FPAS because of the fast increase of pitch angle and the perpendicular velocity of the energetic runaway electrons. The Parail and Pogutse instability is a possible mechanism for the FPAS.
Keywords:  runaway electron beam      instability      fast pitch angle scattering      tokamak  
Received:  06 December 2009      Revised:  15 April 2010      Accepted manuscript online: 
PACS:  52.35.Qz (Microinstabilities (ion-acoustic, two-stream, loss-cone, beam-plasma, drift, ion- or electron-cyclotron, etc.))  
  52.55.Fa (Tokamaks, spherical tokamaks)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 10935004 and 10775041), and partly by JSPS–CAS Core University Program in the field of "Plasma and Nuclear Fusion".

Cite this article: 

Lu Hong-Wei(卢洪伟), Hu Li-Qun(胡立群), Li Ya-Dong(李亚东), Zhong Guo-Qiang(钟国强), Lin Shi-Yao(林士耀), Xu Ping(许平), and EAST-Team Investigation of fast pitch angle scattering of runaway electrons in the EAST tokamak 2010 Chin. Phys. B 19 125201

[1] Jaspers R 1995 Relativistic Runaway Electrons in Tokamak Plasma Ph.D. Thesis, Eindhoven University of Technology, The Netherland (ISBN 90-386-0474-2)
[2] Knoepfel H and Spong D A 1979 Nucl. Fusion19 785
[3] Jaspers R, Lopes Cardozo N J and Finken K H 1994 Phys. Rev. Lett.72 4093
[4] Brossier P 1993 Nucl. Fusion18 1069
[5] Jaspers R, Finken K H and Mank G 1993 Nucl. Fusion33 1775
[6] Li E Z, Ling B L and Liu Y 2010 Chin. Phys. B19 035203
[7] Zhang Y P, Yang J W and Liu Y 2009 Chin. Phys. B18 5385
[8] ITER Physics Basis 2007 Nucl. Fusion47 S178
[9] Mikhailovskii A B 1974 Theory of Plasma Instabilities Vol. 1 (New York: Consultans Bureau)
[10] Finken K H, Watkins J G and Rusbuldt D 1990 Nucl. Fusion30 859
[11] Oomens A A M, Ornstein L Th M, Parker R R, Schuller F C and Talor R J 1976 Phys. Rev. Lett.36 255
[12] Schokker B C, de Vries P C, Oomens A A M, Schuller F C, Lopes Cardozo N J and RTP-Team 1994 21st Euro. Conf. on Controlled Fusion and Plasma Physics Montpellier I-286
[13] Lu H W, Hu L Q and Chen Z Y 2008 J. Plasma Phys.74 445
[14] Parail V V and Pogutse O P 1986 Runaway Electrons in a Tokamak, in Reviews of Plasma Physics Vol. 11, ed. Leontovich M A (New York: Consultans Bureau)
[15] Entrop I 1999 Confinement of Relativistic Runaway Electrons in Tokamak Plasmas Ph.D. Thesis, Eindhoven University of Technology, The Netherland (ISBN 90-386-0947-7)
[16] Plyusnin V V 2002 29th EPS Conference on Plasma Phys. and Control Fusion Montreux, 17–21 June 2002 ECA Vol. 26B P-4.097
[17] Alikaev V V, Razumova K A and Sokolov Y A 1975 Plasma Phys. Rep.1 303
[18] Parail V V and Pogutse O P 1978 Nucl. Fusion18 303
[19] Plyusnin V V, Cabral J A C, Figueiredo H and Varandas C A F 2001 28th EPS Conference on Control Fusion and Plasma Phys. Funchal, 18–22 June ECA Vol. 25A pp. 601–604
[20] Thode L E and Suddan R N 1975 Phys. Fluids18 1552
[21] Breizman B N 1990 Collective Interaction of Relativistic Electron Beams with Plasmas, in Reviews of Plasma Physics Vol. 15, ed. Kadomtsev B B (New York: Consultants Bureau)
[22] Kaw P K, Kruer W L, Liu C S and Nishkawa K 1975 Parametric Instabilities in Plasma, in Advances in Plasma Physics Vol. 6, ed. Simon A and Thompson W B (New York: Wiley)
[23] Papadopoulos K 1975 Phys. Fluids18 1769
[24] Chen F F 1984 Introduction to Plasma Physics and Controlled Fusion Vol. 1 (New York: Plenum Press)
[1] Continuous-wave optical enhancement cavity with 30-kW average power
Xing Liu(柳兴), Xin-Yi Lu(陆心怡), Huan Wang(王焕), Li-Xin Yan(颜立新), Ren-Kai Li(李任恺), Wen-Hui Huang(黄文会), Chuan-Xiang Tang(唐传祥), Ronic Chiche, and Fabian Zomer. Chin. Phys. B, 2023, 32(3): 034206.
[2] Modulational instability of a resonantly polariton condensate in discrete lattices
Wei Qi(漆伟), Xiao-Gang Guo(郭晓刚), Liang-Wei Dong(董亮伟), and Xiao-Fei Zhang(张晓斐). Chin. Phys. B, 2023, 32(3): 030502.
[3] Gyrokinetic simulation of low-n Alfvénic modes in tokamak HL-2A plasmas
Wen-Hao Lin(林文浩), Ji-Quan Li(李继全), J Garcia, and S Mazzi. Chin. Phys. B, 2023, 32(2): 025202.
[4] Parametric decay instabilities of lower hybrid waves on CFETR
Taotao Zhou(周涛涛), Nong Xiang(项农), Chunyun Gan(甘春芸), Guozhang Jia(贾国章), and Jiale Chen(陈佳乐). Chin. Phys. B, 2022, 31(9): 095201.
[5] Propagation and modulational instability of Rossby waves in stratified fluids
Xiao-Qian Yang(杨晓倩), En-Gui Fan(范恩贵), and Ning Zhang(张宁). Chin. Phys. B, 2022, 31(7): 070202.
[6] Kinetic theory of Jeans' gravitational instability in millicharged dark matter system
Hui Chen(陈辉), Wei-Heng Yang(杨伟恒), Yu-Zhen Xiong(熊玉珍), and San-Qiu Liu(刘三秋). Chin. Phys. B, 2022, 31(7): 070401.
[7] Experimental investigation on divertor tungsten sputtering with neon seeding in ELMy H-mode plasma in EAST tokamak
Dawei Ye(叶大为), Fang Ding(丁芳), Kedong Li(李克栋), Zhenhua Hu(胡振华), Ling Zhang(张凌), Xiahua Chen(陈夏华), Qing Zhang(张青), Pingan Zhao(赵平安), Tao He(贺涛), Lingyi Meng(孟令义), Kaixuan Ye(叶凯萱), Fubin Zhong(钟富彬), Yanmin Duan(段艳敏), Rui Ding(丁锐), Liang Wang(王亮), Guosheng Xu(徐国盛), Guangnan Luo(罗广南), and EAST team. Chin. Phys. B, 2022, 31(6): 065201.
[8] Study on divertor plasma behavior through sweeping strike point in new lower divertor on EAST
Yu-Qiang Tao(陶余强), Guo-Sheng Xu(徐国盛), Ling-Yi Meng(孟令义), Rui-Rong Liang(梁瑞荣), Lin Yu(余林), Xiang Liu(刘祥), Ning Yan(颜宁), Qing-Quan Yang(杨清泉), Xin Lin(林新), and Liang Wang(王亮). Chin. Phys. B, 2022, 31(6): 065204.
[9] All polarization-maintaining Er:fiber-based optical frequency comb for frequency comparison of optical clocks
Pan Zhang(张攀), Yan-Yan Zhang(张颜艳), Ming-Kun Li(李铭坤), Bing-Jie Rao(饶冰洁), Lu-Lu Yan(闫露露), Fa-Xi Chen(陈法喜), Xiao-Fei Zhang(张晓斐), Qun-Feng Chen(陈群峰), Hai-Feng Jiang(姜海峰), and Shou-Gang Zhang(张首刚). Chin. Phys. B, 2022, 31(5): 054210.
[10] Quantum properties near the instability boundary in optomechanical system
Han-Hao Fang(方晗昊), Zhi-Jiao Deng(邓志姣), Zhigang Zhu(朱志刚), and Yan-Li Zhou(周艳丽). Chin. Phys. B, 2022, 31(3): 030308.
[11] Effect of initial phase on the Rayleigh—Taylor instability of a finite-thickness fluid shell
Hong-Yu Guo(郭宏宇), Tao Cheng(程涛), Jing Li(李景), and Ying-Jun Li(李英骏). Chin. Phys. B, 2022, 31(3): 035203.
[12] Scaling of rise time of drive current on development of magneto-Rayleigh-Taylor instabilities for single-shell Z-pinches
Xiaoguang Wang(王小光), Guanqiong Wang(王冠琼), Shunkai Sun(孙顺凯), Delong Xiao(肖德龙), Ning Ding(丁宁), Chongyang Mao(毛重阳), and Xiaojian Shu(束小建). Chin. Phys. B, 2022, 31(2): 025203.
[13] Magnetohydrodynamic Kelvin-Helmholtz instability for finite-thickness fluid layers
Hong-Hao Dai(戴鸿昊), Miao-Hua Xu(徐妙华), Hong-Yu Guo(郭宏宇), Ying-Jun Li(李英骏), and Jie Zhang(张杰). Chin. Phys. B, 2022, 31(12): 120401.
[14] Electromagnetic control of the instability in the liquid metal flow over a backward-facing step
Ya-Dong Huang(黄亚冬), Jia-Wei Fu(付佳维), and Long-Miao Chen(陈龙淼). Chin. Phys. B, 2022, 31(12): 124701.
[15] Application of Galerkin spectral method for tearing mode instability
Wu Sun(孙武), Jiaqi Wang(王嘉琦), Lai Wei(魏来), Zhengxiong Wang(王正汹), Dongjian Liu(刘东剑), and Qiaolin He(贺巧琳). Chin. Phys. B, 2022, 31(11): 110203.
No Suggested Reading articles found!