Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(11): 117101    DOI: 10.1088/1674-1056/19/11/117101
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

First-principle study on phase Al0.8Ni3Sn0.2 in Sn-Ni-Al alloy as anode for lithium ion battery

Zhao Ling-Zhia, Li Wei-Shana, Huang Zhao-Wenb, Hu She-Junb, Hou Xian-Huab, Ru Qiangb, Zhang Zhi-Wenb
a Key Laboratory of Electrochemical Technology on Energy Storage and Power Generation of Guangdong Higher Education Institutes, South China Normal University, Guangzhou 510006, China; b School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou 510006, China
Abstract  The mechanism of lithium intercalation/deintercalation for phase Al0.8Ni3Sn0.2 as anode material used in lithium ion battery was studied carefully based on the first-principle plane wave pseudo-potential method. The calculated results indicated that Sn–Ni–Al alloy had high theoretical capacity when used as anode material, however, there was high initial irreversible capacity loss because of the large volume expansion. Therefore the technological parameters during preparing the Sn–Ni–Al anode should be controlled strictly to make the content of Al0.8Ni3Sn0.2 phase as low as possible and to make the anode consist of promising Sn–Ni and Al–Ni phases. For comparison, an experiment based on magnetron sputtering was done. The result showed that the calculation is in good agreement with the experiment. We found that the first-principle investigation method is of far-reaching significance in synthesising new commercial anode materials with high capacity and good cycle performance.
Keywords:  Sn–Ni–Al alloy      first-principle      lithium ion battery     
Received:  04 January 2009      Published:  15 November 2010
PACS:  82.45.Fk (Electrodes)  
  82.47.Aa (Lithium-ion batteries)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 50771046), China Postdoctoral Science Foundation (Grant No. 20080440764), and Guangdong Province Natural Science Foundation (Grant No. 9451063101002082).

Cite this article: 

Huang Zhao-Wen, Hu She-Jun, Hou Xian-Hua, Zhao Ling-Zhi, Ru Qiang, Li Wei-Shan, Zhang Zhi-Wen First-principle study on phase Al0.8Ni3Sn0.2 in Sn-Ni-Al alloy as anode for lithium ion battery 2010 Chin. Phys. B 19 117101

[1] Bruo S 1995 Nature 373 557
[2] Megahed S and Scrosati B 1994 J. Power Sources 51 79
[3] Wang C, Galobardes F and Madou M 2006 Diamond and Related Materials 15 1930
[4] Nishikawa K, Fukunaka Y, Sakka T, Ogata Y and Selman J R 2007 J. Power Sources 174 668
[5] Lee H Y, Jang S W, Lee S M, Lee S J and Baik H K 2002 J. Power Sources 112 8
[6] Ehrlich G M, Durand C, Chen X, Hugener T A, Spiess F and Suib S L 2000 J. Electrochem. Soc. 147 886
[7] Hou X H, Hu S J, Li W S, Zhao L Z and Yu H W 2008 Rare Metal Materials and Engineering 37 827 (in Chinese)
[8] Wang K, He X M, Wang L, Ren J G, Jiang C Y and Wan C R 2006 it J. Electrochem. Soc. 153 1859
[9] Larcher D, Beaulieu L Y, Macneil D D and Dahn J R 2000 J. Electrochem. Soc. 147 1658
[10] Hou Z F, Liu H Y, Zhu Z Z, Huang M C and Yang Y 2003 Acta Phys. Sin. 52 952 (in Chinese)
[11] Ke F S, Huang L, Wei H B, Cai J S, Fan X Y, Yang F Z and Sun S G 2007 J. Power Sources 170 450
[12] Tamura N, Fujimoto A, Kamino M and Fujitani S 2004 it Electrochim. Acta 49 1949
[13] Valvo M, Lafont U, Simonin L and Kelder E M 2007 J. Power Sources 174 428
[14] Kitamura S, Wang L, Tanase S, Obata K and Sakai T 2003 it Electrochemistry 71 1070
[15] Yu H W, Hu S J, Hou X H, Ru Q, Chen T J and Li W S 2009 it Materials Science Forum bf610--613 467
[16] Hou X H, Hu S J, Li W S, Ru Q, Yu H W and Huang Z W 2008 it Chin. Phys. B 17 3422
[17] Jones R O and Gunnarsson O 1989 Rev. Mod. Phys. 61 689
[18] Dreizler R M and Gross E K U 1990 Density Functional Theory (Berlin: Springer Vertag)
[19] Becke A D 1988 Phys. Rev. A 38 3098
[20] Perdew J P, Chevary J A, Vosko S H, Jackson K A, Pederson M R, Singh D J and Fiolhais C 1992 Phys. Rev. B 46 6671
[21] Vanderbilt D 1990 Phys. Rev. B 41 7892
[22] Hou X H, Hu S J, Li W S, Zhao L Z, Yu H W and Tan C L 2008 it Acta Phys. Sin. 57 2374 (in Chinese)
[23] Mao O, Dunlap R A, Courtney I A and Dahn J R 1998 J. Electrochem. Soc. 145 4195
[24] Fan X Y, Zhuang Q C, Jiang H H, Huang L, Dong Q F and Sun S G 2007 Acta Phys. Chim. Sin. 23 973 (in Chinese)
[1] Surface-regulated triangular borophene as Dirac-like materials from density functional calculation investigation
Wenyu Fang(方文玉), Wenbin Kang(康文斌), Jun Zhao(赵军), Pengcheng Zhang(张鹏程). Chin. Phys. B, 2020, 29(9): 096301.
[2] Raman and infrared spectra of complex low energy tetrahedral carbon allotropes from first-principles calculations
Hui Wang(王翚), Ze-Yu Zhang(张泽宇), Xiao-Wu Cai(蔡小五), Zi-Han Liu(刘子晗), Yong-Xiang Zhang(张永翔), Zhen-Long Lv(吕珍龙), Wei-Wei Ju(琚伟伟), Hui-Hui Liu(刘汇慧), Tong-Wei Li(李同伟), Gang Liu(刘钢), Hai-Sheng Li(李海生), Hai-Tao Yan(闫海涛), Min Feng(冯敏). Chin. Phys. B, 2020, 29(9): 093601.
[3] Effects of Re, Ta, and W in [110] (001) dislocation core of γ/γ' interface to Ni-based superalloys: First-principles study
Chuanxi Zhu(朱传喜), Tao Yu(于涛). Chin. Phys. B, 2020, 29(9): 096101.
[4] Two-dimensional hexagonal Zn3Si2 monolayer: Dirac cone material and Dirac half-metallic manipulation
Yurou Guan(官雨柔), Lingling Song(宋玲玲), Hui Zhao(赵慧), Renjun Du(杜仁君), Liming Liu(刘力铭), Cuixia Yan(闫翠霞), Jinming Cai(蔡金明). Chin. Phys. B, 2020, 29(8): 087103.
[5] Degenerate antiferromagnetic states in spinel oxide LiV2O4
Ben-Chao Gong(龚本超), Huan-Cheng Yang(杨焕成), Kui Jin(金魁), Kai Liu(刘凯), Zhong-Yi Lu(卢仲毅). Chin. Phys. B, 2020, 29(7): 077508.
[6] Tunable electronic structures of germanane/antimonene van der Waals heterostructures using an external electric field and normal strain
Xing-Yi Tan(谭兴毅), Li-Li Liu(刘利利), Da-Hua Ren(任达华). Chin. Phys. B, 2020, 29(7): 076102.
[7] Structural, mechanical, and electronic properties of Zr-Te compounds from first-principles calculations
Peng Wang(王鹏), Ning-Chao Zhang(张宁超), Cheng-Lu Jiang(蒋城露), Fu-Sheng Liu(刘福生), Zheng-Tang Liu(刘正堂), Qi-Jun Liu(刘其军). Chin. Phys. B, 2020, 29(7): 076201.
[8] Dependence of mechanical properties on the site occupancy of ternary alloying elements in γ'-Ni3Al: Ab initio description for shear and tensile deformation
Minru Wen(文敏儒), Xing Xie(谢兴), Huafeng Dong(董华锋), Fugen Wu(吴福根), Chong-Yu Wang(王崇愚). Chin. Phys. B, 2020, 29(7): 078103.
[9] First-principles calculations of solute-vacancy interactions in aluminum
Sha-Sha Zhang(张莎莎), Zheng-Jun Yao(姚正军), Xiang-Shan Kong(孔祥山), Liang Chen(陈良), Jing-Yu Qin(秦敬玉). Chin. Phys. B, 2020, 29(6): 066103.
[10] First-principles calculation of influences of La-doping on electronic structures of KNN lead-free ceramics
Ting Wang(王挺), Yan-Chen Fan(樊晏辰), Jie Xing(邢洁), Ze Xu(徐泽), Geng Li(李庚), Ke Wang(王轲), Jia-Gang Wu(吴家刚), Jian-Guo Zhu(朱建国). Chin. Phys. B, 2020, 29(6): 067702.
[11] Prediction of structured void-containing 1T-PtTe2 monolayer with potential catalytic activity for hydrogen evolution reaction
Bao Lei(雷宝), Yu-Yang Zhang(张余洋), Shi-Xuan Du(杜世萱). Chin. Phys. B, 2020, 29(5): 058104.
[12] Ab initio calculations on oxygen vacancy defects in strained amorphous silica
Bao-Hua Zhou(周保花), Fu-Jie Zhang(张福杰), Xiao Liu(刘笑), Yu Song(宋宇), Xu Zuo(左旭). Chin. Phys. B, 2020, 29(4): 047103.
[13] Re effects in model Ni-based superalloys investigated with first-principles calculations and atom probe tomography
Dianwu Wang(王殿武), Chongyu Wang(王崇愚), Tao Yu(于涛), Wenqing Liu(刘文庆). Chin. Phys. B, 2020, 29(4): 043103.
[14] First-principles investigation on ideal strength of B2 NiAl and NiTi alloys
Chun-Yao Zhang(张春尧), Fu-Yang Tian(田付阳), Xiao-Dong Ni(倪晓东). Chin. Phys. B, 2020, 29(3): 036201.
[15] Comparative study on transport properties of N-, P-, and As-doped SiC nanowires: Calculated based on first principles
Ya-Lin Li(李亚林), Pei Gong(龚裴), Xiao-Yong Fang(房晓勇). Chin. Phys. B, 2020, 29(3): 037304.
No Suggested Reading articles found!