Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(8): 084102    DOI: 10.1088/1674-1056/25/8/084102
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Interaction of Airy-Gaussian beams in saturable media

Meiling Zhou(周美玲)1, Yulian Peng(彭玉莲)1, Chidao Chen(陈迟到)1, Bo Chen(陈波)1, Xi Peng(彭喜)1, Dongmei Deng(邓冬梅)1,2
1 Guangdong Provincial Key Laboratory of Nanophotonic Functional Materials and Devices, South China Normal University, Guangzhou 510631, China;
2 CAS Key Laboratory of Geospace Environment, University of Science & Technology of China, Chinese Academy of Sciences(CAS), Hefei 230026, China
Abstract  Based on the nonlinear Schrödinger equation, the interactions of the two Airy-Gaussian components in the incidence are analyzed in saturable media, under the circumstances of the same amplitude and different amplitudes, respectively. It is found that the interaction can be both attractive and repulsive depending on the relative phase. The smaller the interval between two Airy-Gaussian components in the incidence is, the stronger the intensity of the interaction. However, with the equal amplitude, the symmetry is shown and the change of quasi-breathers is opposite in the in-phase case and out-of-phase case. As the distribution factor is increased, the phenomena of the quasi-breather and the self-accelerating of the two Airy-Gaussian components are weakened. When the amplitude is not equal, the image does not have symmetry. The obvious phenomenon of the interaction always arises on the side of larger input power in the incidence. The maximum intensity image is also simulated. Many of the characteristics which are contained within other images can also be concluded in this figure.
Keywords:  Airy-Gaussian beam      interaction      saturable media  
Received:  22 December 2015      Revised:  15 March 2016      Accepted manuscript online: 
PACS:  41.85.-p (Beam optics)  
  42.25.Bs (Wave propagation, transmission and absorption)  
  42.65.Jx (Beam trapping, self-focusing and defocusing; self-phase modulation)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11374108 and 10904041), the Foundation for the Author of Guangdong Province Excellent Doctoral Dissertation (Grant No. SYBZZXM201227), and the Foundation of Cultivating Outstanding Young Scholars ("Thousand, Hundred, Ten" Program) of Guangdong Province, China. CAS Key Laboratory of Geospace Environment, University of Science and Technology of China.
Corresponding Authors:  Dongmei Deng     E-mail:  dmdeng@263.net

Cite this article: 

Meiling Zhou(周美玲), Yulian Peng(彭玉莲), Chidao Chen(陈迟到), Bo Chen(陈波), Xi Peng(彭喜), Dongmei Deng(邓冬梅) Interaction of Airy-Gaussian beams in saturable media 2016 Chin. Phys. B 25 084102

[1] Berry M V and Balazs N L 1979 Am. J. Phys. 47 264
[2] Broky J, Siviloglou G A, Dogariu A and Christodoulides D N 2008 Opt. Express 16 12880
[3] Sivilogou G A, Broky J, Dogariu A and Christodoulides D N 2007 Phys. Rev. Lett. 99 213901
[4] Siviliglou G A and Christodoulides D N 2007 Opt. Lett. 32 979
[5] Gao Z H and Lv B D 2008 Chin. Phys. B 17 943
[6] Zhou G Q 2012 Acta Phys. Sin. 61 174102 (in Chinese)
[7] Bandres M A and Gutierrez-Vega J C 2007 Opt. Express 15 16719
[8] Novitsky A V and Novitsky D V 2009 Opt. Lett. 34 3430
[9] Rudnick A and Marom D M 2012 Opt. Express 19 25570
[10] Wiersma N, Marsal N, Sciamanna M and Wolfersberger D 2014 Opt. Lett. 139 5997
[11] Abdollahpour D, Suntsov S, Papazoglou D G and Tzortzakis S 2010 Phys. Rev. Lett. 105 253901
[12] Deng D and Li H 2012 Appl. Phys. B 106 677
[13] Deng D M 2011 Eur. Phys. J. D 65 553
[14] Chen C D, Chen B, Peng X and Deng D M 2015 J. Opt. 17 035504
[15] Ez-Zariy L, Hennani S, Nebdi H and Belafhal A 2014 Opt. Photon. J. 4 325
[16] Zhou Y M, Zhou G Q and Ru G Y 2014 Prog. Electromagn. Res. 40 143
[17] Deng X B, Deng D M, Chen C D and Liu C Y 2013 Acta Phys. Sin. 62 174201 (in Chinese)
[18] Yariv A and Yeh P 1984 Optical waves in crystals (New York:Wiley)
[19] Chen H C 1983 Theory of electromagnetic waves (New York:McGraw-Hill)
[20] Hu Y, Huang S, Zhang P, Lou C B, Xu J J and Chen Z G 2010 Opt. Lett. 35 3952
[21] Kaminer I, Segev M and Christodoulides D N 2011 Phys. Rev. Lett. 106 213903
[22] Dolev I, Kaminer I, Shapira A, Segev M and Arie A 2012 Phys. Rev. Lett. 108 113903
[23] Bekenstein R and Segev M 2011 Opt. Express 19 23706
[24] Enns R H, Edmundson D E, Rangneker S S and Kaplan A E 1992 Opt. Quantum Electron. 24 1295
[25] Edmundson D E and Enns R H 1995 Phys. Rev. A 51 2491
[26] Edmundson D E 1997 Phys. Rev. E 55 7636
[27] Desyatnikov A S, Mihalache D, Mazilu D, Malomed B A and Lederer F 2007 Phys. Lett. A 364 231
[28] Zhang Y Q, Belic M, Wu Z K, Zheng H B, Lu K Q, Li Y Y and Zhang Y P 2013 Opt. Lett. 38 4585
[29] Zhang Y Q, Belic M, Zheng H B, Chan H X, Li C B, Li Y Y and Zhang Y P 2014 Opt. Express 22 7160
[30] Boyd R W 2008 Nonlinear Optics, 3rd edn. (Amsterdam:Academic Press)
[31] Zhang Y, Skupin S, Maucher F, Pour A G, Lu K and Krolikowski W 2010 Opt. Express 18 27846
[1] Analytical determination of non-local parameter value to investigate the axial buckling of nanoshells affected by the passing nanofluids and their velocities considering various modified cylindrical shell theories
Soheil Oveissi, Aazam Ghassemi, Mehdi Salehi, S.Ali Eftekhari, and Saeed Ziaei-Rad. Chin. Phys. B, 2023, 32(4): 046201.
[2] Abnormal magnetic behavior of prussian blue analogs modified with multi-walled carbon nanotubes
Jia-Jun Mo(莫家俊), Pu-Yue Xia(夏溥越), Ji-Yu Shen(沈纪宇), Hai-Wen Chen(陈海文), Ze-Yi Lu(陆泽一), Shi-Yu Xu(徐诗语), Qing-Hang Zhang(张庆航), Yan-Fang Xia(夏艳芳), Min Liu(刘敏). Chin. Phys. B, 2023, 32(4): 047503.
[3] All-optical switches based on three-soliton inelastic interaction and its application in optical communication systems
Shubin Wang(王树斌), Xin Zhang(张鑫), Guoli Ma(马国利), and Daiyin Zhu(朱岱寅). Chin. Phys. B, 2023, 32(3): 030506.
[4] Soliton molecules, T-breather molecules and some interaction solutions in the (2+1)-dimensional generalized KDKK equation
Yiyuan Zhang(张艺源), Ziqi Liu(刘子琪), Jiaxin Qi(齐家馨), and Hongli An(安红利). Chin. Phys. B, 2023, 32(3): 030505.
[5] Flux pinning evolution in multilayer Pb/Ge/Pb/Ge/Pb superconducting systems
Li-Xin Gao(高礼鑫), Xiao-Ke Zhang(张晓珂), An-Lei Zhang(张安蕾), Qi-Ling Xiao(肖祁陵), Fei Chen(陈飞), and Jun-Yi Ge(葛军饴). Chin. Phys. B, 2023, 32(3): 037402.
[6] Formalism of rotating-wave approximation in high-spin system with quadrupole interaction
Wen-Kui Ding(丁文魁) and Xiao-Guang Wang(王晓光). Chin. Phys. B, 2023, 32(3): 030301.
[7] Intense low-noise terahertz generation by relativistic laser irradiating near-critical-density plasma
Shijie Zhang(张世杰), Weimin Zhou(周维民), Yan Yin(银燕), Debin Zou(邹德滨), Na Zhao(赵娜), Duan Xie(谢端), and Hongbin Zhuo(卓红斌). Chin. Phys. B, 2023, 32(3): 035201.
[8] Correction of intense laser-plasma interactions by QED vacuum polarization in collision of laser beams
Wen-Bo Chen(陈文博) and Zhi-Gang Bu(步志刚). Chin. Phys. B, 2023, 32(2): 025204.
[9] Quantitative analysis of soliton interactions based on the exact solutions of the nonlinear Schrödinger equation
Xuefeng Zhang(张雪峰), Tao Xu(许韬), Min Li(李敏), and Yue Meng(孟悦). Chin. Phys. B, 2023, 32(1): 010505.
[10] Radiation effects of electrons on multilayer FePS3 studied with laser plasma accelerator
Meng Peng(彭猛), Jun-Bo Yang(杨俊波), Hao Chen(陈浩), Bo-Yuan Li(李博源), Xu-Lei Ge(葛绪雷), Xiao-Hu Yang(杨晓虎), Guo-Bo Zhang(张国博), and Yan-Yun Ma(马燕云). Chin. Phys. B, 2022, 31(8): 086102.
[11] Design and high-power test of 800-kW UHF klystron for CEPC
Ou-Zheng Xiao(肖欧正), Shigeki Fukuda, Zu-Sheng Zhou(周祖圣), Un-Nisa Zaib, Sheng-Chang Wang(王盛昌), Zhi-Jun Lu(陆志军), Guo-Xi Pei(裴国玺), Munawar Iqbal, and Dong Dong(董东). Chin. Phys. B, 2022, 31(8): 088401.
[12] Manipulation of nonreciprocal unconventional photon blockade in a cavity-driven system composed of an asymmetrical cavity and two atoms with weak dipole-dipole interaction
Xinqin Zhang(张新琴), Xiuwen Xia(夏秀文), Jingping Xu(许静平), Haozhen Li(李浩珍), Zeyun Fu(傅泽云), and Yaping Yang(羊亚平). Chin. Phys. B, 2022, 31(7): 074204.
[13] Probing component contributions and internal polarization in silicon-graphite composite anode for lithium-ion batteries with an electrochemical-mechanical model
Yue Chen(陈约), Fuliang Guo(郭福亮), Lufeng Yang(杨陆峰), Jiaze Lu(卢嘉泽), Danna Liu(刘丹娜), Huayu Wang(王华宇), Jieyun Zheng(郑杰允), Xiqian Yu(禹习谦), and Hong Li(李泓). Chin. Phys. B, 2022, 31(7): 078201.
[14] Synchronization of nanowire-based spin Hall nano-oscillators
Biao Jiang(姜彪), Wen-Jun Zhang(张文君), Mehran Khan Alam, Shu-Yun Yu(于淑云), Guang-Bing Han(韩广兵), Guo-Lei Liu(刘国磊), Shi-Shen Yan(颜世申), and Shi-Shou Kang(康仕寿). Chin. Phys. B, 2022, 31(7): 077503.
[15] Uniaxial stress effect on quasi-one-dimensional Kondo lattice CeCo2Ga8
Kangqiao Cheng(程康桥), Binjie Zhou(周斌杰), Cuixiang Wang(王翠香), Shuo Zou(邹烁), Yupeng Pan(潘宇鹏), Xiaobo He(何晓波), Jian Zhang(张健), Fangjun Lu(卢方君), Le Wang(王乐), Youguo Shi(石友国), and Yongkang Luo(罗永康). Chin. Phys. B, 2022, 31(6): 067104.
No Suggested Reading articles found!