Please wait a minute...
Chin. Phys. B, 2026, Vol. 35(2): 024301    DOI: 10.1088/1674-1056/adee01
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Single broadband source depth estimation using Stokes parameters in shallow water

Yizheng Wei(韦宜政)1,2, Chao Sun(孙超)1,2, Lei Xie(谢磊)1,2,†, and Mingyang Li(李明杨)1,2,‡
1 School of Marine Science and Technology, Northwestern Polytechnical University, Xi'an 710072, China;
2 Key Laboratory of Ocean Acoustic and Sensing, Ministry of Industry and Information Technology, Northwestern Polytechnical University, Xi'an 710072, China
Abstract  Presented in this study is a novel method for estimating the depth of single underwater source in shallow water, utilizing vector sensors. The approach leverages the depth distribution of the broadband Stokes parameters to estimate source depth accurately. Unlike traditional matched field processing (MFP) and matched mode processing (MMP), the proposed approach can estimate source depth directly from the data received by sensors without requiring complete environmental information. Firstly, the broadband Stokes parameters (BSP) are established using the normal mode theory. Then the nonstationary phase approximation is used to simplify the theoretical derivation, which is necessary when dealing with broadband integrals. Additionally, range terms of the BSP are eliminated by normalization. By analyzing the depth distribution of the normalized broadband Stokes parameters (NBSP), it is found that the NBSP exhibit extreme values at the source depth, which can be used for source depth estimation. So the proposed depth estimation method is based on searching the peaks of the NBSP. Simulations show that this method is effective in relatively simple shallow water environments. Finally, the effect of source range, frequency bandwidth, sound speed profile (SSP), water depth, and signal-to-noise ratio (SNR) are studied. The findings indicate that the proposed method can accurately estimate the source depth when the SNR is greater than $-5$ dB and does not need to consider model mismatch issues. Additionally, variations in environmental parameters have minimal impact on estimation accuracy. Compared to MFP, the proposed method requires a higher SNR, but demonstrates superior robustness against fluctuations in environmental parameters.
Keywords:  broadband source depth estimation      shallow water      polarization      Stokes parameters  
Received:  17 March 2025      Revised:  07 July 2025      Accepted manuscript online:  10 July 2025
PACS:  43.30.+m (Underwater sound)  
  43.60.Jn (Source localization and parameter estimation)  
  43.60.-c (Acoustic signal processing)  
  43.30.Bp (Normal mode propagation of sound in water)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 12274348 and 12004335) and the National Key Research and Development Program of China (Grant No. 2024YFC2813800).
Corresponding Authors:  Lei Xie, Mingyang Li     E-mail:  xielei2014@mail.nwpu.edu.cn;mingyang.li@nwpu.edu.cn

Cite this article: 

Yizheng Wei(韦宜政), Chao Sun(孙超), Lei Xie(谢磊), and Mingyang Li(李明杨) Single broadband source depth estimation using Stokes parameters in shallow water 2026 Chin. Phys. B 35 024301

[1] Baggeroer A B, Kuperman W A and Mikhalevsky P N 1993 IEEE J. Ocean. Eng. 18 401
[2] Fawecett J A, YeremyML and Chapman N R 1996 J. Acoust. Soc. Am. 99 272
[3] Shang E C 1985 J. Acoust. Soc. Am. 77 1413
[4] Yang T C 1987 J. Acoust. Soc. Am. 82 1736
[5] Yang T C 2014 J. Acoust. Soc. Am. 135 1218
[6] Yang T C and Xu W 2016 J. Acoust. Soc. Am. 140 EL302
[7] Zhai D, Zhang B, Li F, Zhang Y and Yang X 2022 Appl. Acoust. 192 108723
[8] Qi Y, Zhou S, Liu C, Dun J and Liu S 2024 J. Acoust. Soc. Am. 155 1103
[9] Liang Y, Chen Y, Meng Z, Zhou X and Zhang Y 2023 J. Mar. Sci. Eng. 11 2059
[10] Qi Y, Zhou S and Liu C 2023 J. Acoust. Soc. Am. 154 2800
[11] Shchurov V A 2011 Vector acoustics of the ocean (Beijing: National Defense Industry Press) p. 2 (in Chinese)
[12] Shi C, Zhao R, Long Y, Yang S, Wang Y, Chen H, Ren J and Zhang X 2019 Natl. Sci. Rev. 6 707
[13] Dall’Osto D R and Dahl P H 2013 J. Acoust. Soc. Am. 134 109
[14] Dahl P H and Dall’Osto D R 2020 IEEE J. Ocean. Eng. 45 131
[15] Dahl P H and Dall’Osto D R 2022 IEEE J. Ocean. Eng. 47 680
[16] Bonnel J, Flamant J, Dall’Osto D R, Le Bihan N and Dahl P H 2021 J. Acoust. Soc. Am. 150 1897
[17] Dahl P H and Bonnel J 2022 J. Acoust. Soc. Am. 151 3818
[18] Chen H, Zhu Z and Yang D 2024 IEEE J. Ocean. Eng. 49 1127
[19] Wei Y and Sun C 2024 J. Mar. Sci. Eng. 12 1325
[20] Flamant J and Bonnel J 2023 J. Acoust. Soc. Am. 153 3012
[21] Jensen F B, Kuperman W A, Porter M B and Schmidt H 2017 Computational Ocean Acoustics, 2nd edn. (Beijing: National Defense Industry Press) pp. 272–275 (in Chinese)
[22] Zhang H, Xie J, Liu J, Gong L and Li Z 2023 J. Shanghai Jiaotong Univ. 58 995
[1] Polarization impact on sensitivity of Rydberg atom-based microwave sensors
Minghao Cai(蔡明皓), Aomao Wei(魏奥贸), Shanshan Chen(陈珊珊), and Yuming Huang(黄聿铭). Chin. Phys. B, 2025, 34(8): 083201.
[2] On the topographic Rossby solitary waves via physical-informed neural networks
Wenxu Liu(刘文绪), Ligeyan Dao(道力格艳), and Ruigang Zhang(张瑞岗). Chin. Phys. B, 2025, 34(7): 070504.
[3] Polarization-sensitive nonlinear optical diffraction
Jianluo Chen(陈健洛), Lihong Hong(洪丽红), Yu Zou(邹娱), Jiacheng Li(李嘉诚), and Zhi-Yuan Li(李志远). Chin. Phys. B, 2025, 34(6): 064204.
[4] Molecular dynamics simulations of ferroelectricity in P(VDF-TrFE)
Mengyuan Tang(唐梦圆), Chuhan Tang(唐楚涵), Sheng-Yi Xie(谢声意), and Fuxiang Li(李福祥). Chin. Phys. B, 2025, 34(6): 067701.
[5] Deep learning-enabled inverse design of polarization-selective structural color based on coding metasurface
Haolin Yang(杨昊霖), Bo Ni(倪波), Junhong Guo(郭俊宏), Hua Zhou(周华), and Jianhua Chang(常建华). Chin. Phys. B, 2025, 34(5): 050702.
[6] Encoding converters for quantum communication networks
Hua-Xing Xu(许华醒), Shao-Hua Wang(王少华), Ya-Qi Song(宋雅琪), Ping Zhang(张平), and Chang-Lei Wang(王昌雷). Chin. Phys. B, 2025, 34(5): 050310.
[7] Broadband polarization-independent terahertz multifunctional liquid crystal coding metasurface based on topological optimization
Yu Chen(陈羽), Wu-Hao Cao(曹吴昊), Jia-Qi Li(李嘉琦), Ming-Zhe Zhang(张明哲), Xin-Yi Du(杜欣怡), Ding-Shan Gao(郜定山), and Pei-Li Li(李培丽). Chin. Phys. B, 2025, 34(4): 044205.
[8] First principles prediction of the valley Hall effect in ScBrCl monolayer
Xiang Yu(于翔), Ping Li(李萍), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2025, 34(4): 047305.
[9] Merging and separation of polarization singularities in complex lattices
Mengyao Wang(王梦瑶), Tian Shi(石天), Luhui Ning(宁鲁慧), Peng Liu(刘鹏), Liangsheng Li(李粮生), and Ning Zheng(郑宁). Chin. Phys. B, 2025, 34(3): 037303.
[10] Modulation of Bessel-like vector vortex beam using the resonant magneto-optical effect in rubidium vapor
Yan Ma(马燕), Xin Yang(杨欣), Hong Chang(常虹), Ming-Tao Cao(曹明涛), Xiao-Fei Zhang(张晓斐), Rui-Fang Dong(董瑞芳), and Shou-Gang Zhang(张首刚). Chin. Phys. B, 2025, 34(2): 024202.
[11] Machine-learning-assisted efficient reconstruction of the quantum states generated from the Sagnac polarization-entangled photon source
Menghui Mao(毛梦辉), Wei Zhou(周唯), Xinhui Li(李新慧), Ran Yang(杨然), Yan-Xiao Gong(龚彦晓), and Shi-Ning Zhu(祝世宁). Chin. Phys. B, 2024, 33(8): 080301.
[12] Deep-subwavelength single grooves prepared by femtosecond laser direct writing on Si
Rui-Xi Ye(叶瑞熙) and Min Huang(黄敏). Chin. Phys. B, 2024, 33(8): 087901.
[13] Intrinsic polarization conversion and avoided-mode crossing in X-cut lithium niobate microrings
Zelin Tan(谭泽林), Jianfa Zhang(张检发), Zhihong Zhu(朱志宏), Wei Chen(陈伟), Zhengzheng Shao(邵铮铮), Ken Liu(刘肯), and Shiqiao Qin(秦石乔). Chin. Phys. B, 2024, 33(6): 064205.
[14] Fully spin-polarized, valley-polarized and spin-valley-polarized electron beam splitters utilizing zero-line modes in a three-terminal device
Xiao-Long Lü(吕小龙), Jia-En Yang(杨加恩), and Hang Xie(谢航). Chin. Phys. B, 2024, 33(6): 068502.
[15] Linear dichroism transition and polarization-sensitive photodetector of quasi-one-dimensional palladium bromide
Wan-Li Zhu(朱万里), Wei-Li Zhen(甄伟立), Rui Niu(牛瑞), Ke-Ke Jiao(焦珂珂), Zhi-Lai Yue(岳智来), Hui-Jie Hu(胡慧杰), Fei Xue(薛飞), and Chang-Jin Zhang(张昌锦). Chin. Phys. B, 2024, 33(6): 068101.
No Suggested Reading articles found!