Please wait a minute...
Chin. Phys. B, 2026, Vol. 35(2): 028704    DOI: 10.1088/1674-1056/adf4a6
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Patterned line-illumination mesoscopy with a moving slit for enhancing background suppression in cortex-wide mouse brain imaging

Chaowei Zhuang(庄超玮)1,†, Yi Yang(杨懿)1,2,3,4, and Hao Xie(谢浩)5,6,‡
1 Zhejiang Hehu Technology Co., Ltd., Hangzhou 311121, China;
2 School of Reliability and Systems Engineering, Beihang University, Beijing 100191, China;
3 Peng Cheng Laboratory, Shenzhen 518000, China;
4 Hangzhou Innovation Institute, Beihang University, Hangzhou 310052, China;
5 Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
6 Yangtze River Delta Physics Research Center Co., Ltd., Liyang 213300, China
Abstract  Wide-field mesoscopy provides the capabilities of cortex-wide field of view (FOV), cellular resolution and high frame rate for neuronal imaging in the mouse brain. However, inherent background fluorescence degrades the image quality and hinders neuronal signal extraction. To address this problem, we first introduce a cortex-wide, high-resolution line-illumination mesoscope with a moving slit designed for in vivo mouse brain imaging. This system achieves a 6.6$\times$6.6 mm FOV, microscale cellular resolution, a high frame rate of 10 Hz, as well as the background rejection ability. Furthermore, we integrated patterned illumination into the system to enhance the background suppression. Experimental results show that the proposed system successfully captures neurodynamics in the living mouse brain. Compared with conventional wide-field mesoscopes, the cortex-wide patterned line-illumination mesoscope (PLIM) achieves a threefold increase in the signal-to-background ratio (SBR). With patterned illumination integrated, the SBR enhancement further reaches four-and-a-half-fold.
Keywords:  wide-field fluorescence imaging      optical sectioning      patterned illumination  
Received:  14 May 2025      Revised:  12 July 2025      Accepted manuscript online:  28 July 2025
PACS:  87.85.Pq (Biomedical imaging)  
  87.19.lh (Optical imaging of neuronal activity)  
Fund: H. Xie gratefully acknowledges the support from the National Natural Science Foundation of China (Grant No. 61971256).
Corresponding Authors:  Chaowei Zhuang, Hao Xie     E-mail:  zhuangchaowei@hehutek.com;xiehao@iphy.ac.cn

Cite this article: 

Chaowei Zhuang(庄超玮), Yi Yang(杨懿), and Hao Xie(谢浩) Patterned line-illumination mesoscopy with a moving slit for enhancing background suppression in cortex-wide mouse brain imaging 2026 Chin. Phys. B 35 028704

[1] Lichtman J M and Conchello J A 2005 Nat. Methods 2 910
[2] Steinmetz N A, Zatka-Haas P, Carandini M and Harris K D 2019 Nature 576 266
[3] Kim E J, Juavinett A L, Kyubwa E M and Callaway E M 2015 Neuron 88 1253
[4] Roy D S, Park Y G, Kim M E, Zhang Y, Ogawa S K, DiNapoli N, Gu X, Cho J H, Choi H, Kamentsky L, Martin J, Mosto O, Aida T, Chung K and Tonegawa S 2022 Nat. Commun. 13 1
[5] Zhuang C, Cao J, Zhang R, Xiao G, Hu J, Xie H and Dai Q 2021 Biomed. Opt. Express 12 1858
[6] Zhang R, Zhuang C, Wang Z, Xiao G, Chen K, Li H, Tong L, Mi W, Xie H and Cao J 2022 Biosensors 12 567
[7] Werley C A, Chien M P and Cohen A E 2017 Biomed. Opt. Express 8 5794
[8] Kauvar I V, Machado T A, Yuen E, Kochalka J, Choi M, Allen W E, Wetzstein G and Deisseroth K 2020 Neuron 107 351
[9] Xie H, Han X, Xiao G, Xu H, Zhang Y, Zhang G, Li Q, He J, Zhu D, Yu X and Dai Q 2023 Nat. Biomed. Eng. 8 740
[10] Fan J, Suo J, Wu J, Xie H, Shen Y, Chen F, Wang G, Cao L, Jin G, He Q, Li T, Luan G, Kong L, Zheng Z and Dai Q 2019 Nat. Photonics 13 809
[11] Neil M, Juskaitis R and Wilson T 1997 Opt. Lett. 22 1905
[12] Lim D, Ford T N, Chu K K and Mertz J 2011 J. Biomed. Opt. 16 016014
[13] Shi R, Jin C, Xie H, Zhang Y, Li X, Dai Q and Kong L 2019 Biomed. Opt. Express 10 6625
[14] McNally J G, Karpova T, Cooper J and Conchello J A 1999 Methods 19 373
[15] Li C, Gao L, Liu Y and Wang L V 2013 Appl. Phys. Lett. 103 183703
[16] Zhao W, Feng Z and Qiu L 2007 Chin. Phys. 16 1624
[17] White J G, Amos W B and Fordham M 1987 J. Cell Biol. 105 41
[18] Denk W, Strickler J H and Webb W W 1990 Science 248 73
[19] Helmchen F and Denk W 2005 Nat. Methods 2 932
[20] Zhang N, Zhou L, Liu X,Wei Z, Liu H, Lan S, Meng Z and Fan H 2021 Chin. Phys. B 30 044204
[21] McConnell G, Tragardh J, Amor R, Dempster J, Reid E and Amos W B 2016 Elife 5 e18659
[22] Sofroniew N J, Flickinger D, King J and Svoboda K 2016 Elife 5 e14472
[23] Yu C H, Stirman J N, Yu Y, Hira R and Smith S L 2021 Nat. Commun. 12 6639
[24] Wolleschensky R, Zimmermann B and Kempe M 2006 J. Biomed. Opt. 11 064011
[25] Poher V, Kennedy G T, Manning H B, Owen D M, Zhang, H X, Gu E, Dawson M D, French P MW and Neil M AA 2008 Opt. Lett. 33 1813
[26] Jeong H W, Kim H J, Eun J, Heo S, Lim M, Cho Y H and Kim B M 2015 Appl. Opt. 54 3811
[27] Mei E, Fomitchov P A, Graves R and Campion M 2012 Journal of Microscopy 247 269
[1] Assessing pathological features of breast cancer via the multimodal information of multiphoton and Raman imaging
Bing-Ran Gao(高冰然), Xi-Wen Chen(陈希文), Bao-Ping Zhang(张宝萍), Ivan A. Bratchenko, Jian-Xin Chen(陈建新), Shuang Wang(王爽), and Si-Yuan Xu(许思源). Chin. Phys. B, 2023, 32(11): 118703.
[2] A compact and closed-loop spin-exchange relaxation-free atomic magnetometer for wearable magnetoencephalography
Qing-Qian Guo(郭清乾), Tao Hu(胡涛), Xiao-Yu Feng(冯晓宇), Ming-Kang Zhang(张明康), Chun-Qiao Chen(陈春巧), Xin Zhang(张欣), Ze-Kun Yao(姚泽坤), Jia-Yu Xu(徐佳玉),Qing Wang(王青), Fang-Yue Fu(付方跃), Yin Zhang(张寅), Yan Chang(常严), and Xiao-Dong Yang(杨晓冬). Chin. Phys. B, 2023, 32(4): 040702.
[3] Deep learning for image reconstruction in thermoacoustic tomography
Qiwen Xu(徐启文), Zhu Zheng(郑铸), and Huabei Jiang(蒋华北). Chin. Phys. B, 2022, 31(2): 024302.
[4] Thermoacoustic assessment of hematocrit changes in human forearms
Xue Wang(王雪), Rui Zhao(赵芮), Yi-Tong Peng(彭亦童), Zi-Hui Chi(迟子惠), Zhu Zheng(郑铸), En Li(李恩), Lin Huang(黄林), and Hua-Bei Jiang(蒋华北). Chin. Phys. B, 2021, 30(9): 094302.
[5] Influence exerted by bone-containing target body on thermoacoustic imaging with current injection
Yan-Hong Li(李艳红), Guo-Qiang Liu(刘国强), Jia-Xiang Song(宋佳祥), Hui Xia(夏慧). Chin. Phys. B, 2019, 28(4): 044302.
[6] Image reconstruction for cone-beam computed tomography using total p-variation plus Kullback–Leibler data divergence
Ai-Long Cai(蔡爱龙), Lei Li(李磊), Lin-Yuan Wang(王林元), Bin Yan(闫镔), Zhi-Zhong Zheng(郑治中), Han-Ming Zhang(张瀚铭), Guo-En Hu(胡国恩). Chin. Phys. B, 2017, 26(7): 078701.
[7] Spectroscopic measurements and terahertz imaging of the cornea using a rapid scanning terahertz time domain spectrometer
Wen-Quan Liu(刘文权), Yuan-Fu Lu(鲁远甫), Guo-Hua Jiao(焦国华), Xian-Feng Chen(陈险峰), Zhi-Sheng Zhou(周志盛), Rong-Bin She(佘荣斌), Jin-Ying Li(李金瑛), Si-Hai Chen(陈四海), Yu-Ming Dong (董玉明), Jian-Cheng Lü(吕建成). Chin. Phys. B, 2016, 25(6): 060702.
[8] Low-Tc direct current superconducting quantum interference device magnetometer-based 36-channel magnetocardiography system in a magnetically shielded room
Qiu Yang (邱阳), Li Hua (李华), Zhang Shu-Lin (张树林), Wang Yong-Liang (王永良), Kong Xiang-Yan (孔祥燕), Zhang Chao-Xiang (张朝祥), Zhang Yong-Sheng (张永升), Xu Xiao-Feng (徐小峰), Yang Kang (杨康), Xie Xiao-Ming (谢晓明). Chin. Phys. B, 2015, 24(7): 078501.
[9] A progressive processing method for breast cancer detection via UWB based on an MRI-derived model
Xiao Xia (肖夏), Song Hang (宋航), Wang Zong-Jie (王宗杰), Wang Liang (王梁). Chin. Phys. B, 2014, 23(7): 074101.
[10] Cardiac electrical activity imaging of patients with CRBBB or CLBBB in magnetocardiography
Zhu Jun-Jie (朱俊杰), Jiang Shi-Qin (蒋式勤), Wang Wei-Yuan (王伟远), Zhao Chen (赵晨), Wu Yan-Hua (吴燕华), Luo Ming (罗明), Quan Wei-Wei (权薇薇). Chin. Phys. B, 2014, 23(4): 048702.
[11] Modulation of electroencephalograph activities by manual acupuncture stimulation in healthy subjects: An autoregressive spectral analysis
Yi Guo-Sheng (伊国胜), Wang Jiang (王江), Deng Bin (邓斌), Wei Xi-Le (魏熙乐), Han Chun-Xiao (韩春晓 ). Chin. Phys. B, 2013, 22(2): 028703.
[12] Modulation of brain functional connectivity with manual acupuncture in healthy subjects: An electroencephalograph case studying
Yi Guo-Sheng (伊国胜), Wang Jiang (王江), Han Chun-Xiao (韩春晓), Deng Bin (邓斌), Wei Xi-Le (魏熙乐), Li Nuo (李诺). Chin. Phys. B, 2013, 22(2): 028702.
[13] Characteristics analysis of acupuncture electroencephalograph based on mutual information Lempel–Ziv complexity
Luo Xi-Liu(罗昔柳), Wang Jiang(王江), Han Chun-Xiao(韩春晓), Deng Bin(邓斌), Wei Xi-Le(魏熙乐), and Bian Hong-Rui(边洪瑞) . Chin. Phys. B, 2012, 21(2): 028701.
No Suggested Reading articles found!