Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(7): 078701    DOI: 10.1088/1674-1056/26/7/078701
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Image reconstruction for cone-beam computed tomography using total p-variation plus Kullback–Leibler data divergence

Ai-Long Cai(蔡爱龙), Lei Li(李磊), Lin-Yuan Wang(王林元), Bin Yan(闫镔), Zhi-Zhong Zheng(郑治中), Han-Ming Zhang(张瀚铭), Guo-En Hu(胡国恩)
National Digital Switching System Engineering & Technological Research Centre, Zhengzhou 450002, China
Abstract  Accurate reconstruction from a reduced data set is highly essential for computed tomography in fast and/or low dose imaging applications. Conventional total variation (TV)-based algorithms apply the L1 norm-based penalties, which are not as efficient as Lp(0 <p <1) quasi-norm-based penalties. TV with a p-th power-based norm can serve as a feasible alternative of the conventional TV, which is referred to as total p-variation (TpV). This paper proposes a TpV-based reconstruction model and develops an efficient algorithm. The total p-variation and Kullback–Leibler (KL) data divergence, which has better noise suppression capability compared with the often-used quadratic term, are combined to build the reconstruction model. The proposed algorithm is derived by the alternating direction method (ADM) which offers a stable, efficient, and easily coded implementation. We apply the proposed method in the reconstructions from very few views of projections (7 views evenly acquired within 180°). The images reconstructed by the new method show clearer edges and higher numerical accuracy than the conventional TV method. Both the simulations and real CT data experiments indicate that the proposed method may be promising for practical applications.
Keywords:  image reconstruction      total p-variation minimization      Kullback–Leibler data divergence      p-shrinkage mapping  
Received:  19 December 2016      Revised:  07 March 2017      Accepted manuscript online: 
PACS:  87.57.nf (Reconstruction)  
  87.59.bd (Computed radiography)  
  87.59.bf (Digital radiography)  
  87.85.Pq (Biomedical imaging)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos.61372172 and 61601518).
Corresponding Authors:  Bin Yan     E-mail:  ybspace@hotmail.com

Cite this article: 

Ai-Long Cai(蔡爱龙), Lei Li(李磊), Lin-Yuan Wang(王林元), Bin Yan(闫镔), Zhi-Zhong Zheng(郑治中), Han-Ming Zhang(张瀚铭), Guo-En Hu(胡国恩) Image reconstruction for cone-beam computed tomography using total p-variation plus Kullback–Leibler data divergence 2017 Chin. Phys. B 26 078701

[1] Buzug T M 2008 Computed Tomography:From Photon Statistics to Modern Cone-beam CT (1st Edn.) (Berlin Heidelberg:Springer-Verlag) p. 1
[2] Lauzier P T, Tang J and Chen G H 2012 Phys. Med. Biol. 57 2461
[3] Chen G H, Theriault-Lauzier P, Jie T, Nett B, Shuai L, Zambelli J, Zhihua Q, Bevins N, Raval A, Reeder S and Rowley H 2012 Medical Imaging, IEEE Transactions on 31 907
[4] Chen G H, Tang J and Leng S 2008 Medical Physics 35 660
[5] Wu D, Li L and Zhang L 2013 Phys. Med. Biol. 58 4047
[6] Ding H, Gao H, Zhao B, Cho H M and Molloi S 2014 Phys. Med. Biol. 59 6005
[7] Ramani S and Fessler J A 2012 Biomedical Imaging (ISBI), 2012 9th IEEE International Symposium on pp. 1008–1011
[8] Zhao B, Gao H, Ding H and Molloi S 2013 Medical Physics 40 031905
[9] Xu Q, Yu H, Mou X, Zhang L, Hsieh J and Wang G 2012 IEEE Transactions on Medical Imaging 31 1682
[10] Xu Q, Yu H, Wang G and Mou X 2014 Frontiers of Medical Imaging pp. 99–109
[11] Sidky E Y and Pan X C 2008 Phys. Med. Biol. 53 4777
[12] Sidky E Y, Jorgensen J H and Pan X C 2012 Phys. Med. Biol. 57 3065
[13] Sidky E Y, Jorgensen J H and Pan X C 2013 Medical Physics 40 031115
[14] Li C 2009 An Efficient Algorithm For Total Variation Regularization With Applications To The Single Pixel Camera And Compressive Sensing (PhD Dissertation) Rice University
[15] Wang Y, Yang J, Yin W and Zhang Y 2008 SIAM Journal on Imaging Sciences 1 248
[16] Chartrand R, Sidky E Y and Pan X C 2013 Proceedings of Asilomar Conference on Signal System and Computers pp. 665–669
[17] Sidky E Y, Chartrand R, Boone J M and Pan X C 2014 IEEE Journal of Translational Engineering in Health and Medicine 2 1
[18] Yang J, Yu H Y, Jiang M and Wang G 2010 Inverse Problems 26 350131
[19] Bredies K, Kunisch K and Pock T 2010 SIAM Journal on Imaging Sciences 3 349
[20] Liu Y, Liang Z, Ma J, Lu H, Wang K, Zhang H and Moore W 2014 IEEE Transactions on Medical Imaging 33 749
[21] Chambolle A and Pock T 2010 Journal of Mathematical Imaging and Vision 40 1
[22] Pock T and Chambolle A 2011 IEEE International Conference on Computer Vision (ICCV):IEEE pp. 1762–1769
[23] Goldstein T and Osher S 2009 SIAM Journal on Imaging Sciences 2 323
[24] Han X, Bian J G, Ritman E L, Sidky E Y and Pan X C 2012 Phys. Med. Biol. 57 5245
[25] Bian J G, Han X, Yang K, Sidky E Y, Boone J M and Pan X C 2011 Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC), 2011 IEEE pp. 2566–2568
[26] Bian J G, Han X, Sidky E Y, Siewerdsen J H and Pan X C 2010 Nuclear Science Symposium Conference Record (NSS/MIC), 2010 IEEE pp. 3479–3482
[27] Bian J G, Yang K, Boone J M, Han X, Sidky E Y and Pan X C 2014 Phys. Med. Biol. 59 2659
[28] Barber R F and Sidky E Y 2016 arXiv:1510.08842v08842
[29] Sidky E Y, Kraemer D N, Roth E G, Ullberg C, Reiser I S and Pan X C 2014 Journal of Medical Imaging (Bellingham)1 031007
[30] Barber R F, Sidky E Y, Schmidt T G and Pan X 2015 arXiv:1511.03384v03381
[31] Vandeghinste B, Goossens B, Beenhouwer J, Pizurica A, Philips W, Vandenberghe S and Staelens S 2011 11th International Meeting on Fully Three-Dimensional Reconstruction in Radiology and Nuclear Medicine pp. 431–434
[32] Yang J, Zhang Y and Yin W 2010 IEEE Journal of Selected Topics in Signal Processing 4 288
[33] Wang L Y, Cai A L, Zhang H M, Yan B, Li L, Hu G E and Bao S L 2015 Journal of X-ray Science and Technology 23 83
[34] Cai A L, Wang L Y, Zhang H M, Yan B, Li L, Xi X Q and Li J X 2014 Journal of X-ray Science and Technology 22 335
[35] Zhang H M, Wang L Y, Yan B, Li L, Xi X Q and Lu L Z 2013 Chin. Phys. B 22 078701
[36] Wang L Y, Cai A L, Zhang H M, Yan B, Li L and Hu G E 2013 Computational and Mathematical Methods in Medicine 2013
[37] Li S P, Wang L Y, Yan B, Li L and Liu Y J 2012 Chin. Phys. B 21 108703
[38] Daubechies I, Defrise M and De Mol C 2004 Communications on Pure and Applied Mathematics 57 1413
[39] Chartrand R 2014 IEEE International Conference on Acoustic, Speech and Signal Processing pp. 1025–1029
[40] Woodworth J and Chartrand R 2014 Inverse Problems 32 075004
[41] Chartrand R 2009 Biomedical Imaging:From Nano to Macro, 2009 ISBI '09 IEEE International Symposium on pp. 262–265
[42] Cai A L, Wang L Y, Yan B, Li L, Zhang H M and Hu G E 2015 Computerized Medical Imaging and Graphics 45 1
[43] Gao H 2012 Medical Physics 39 7110
[44] Jorgensen J S, Sidky E Y and Pan X 2013 IEEE Transactions on Medical Imaging 32 460
[1] Terahertz two-pixel imaging based on complementary compressive sensing
Yuye Wang(王与烨), Yuchen Ren(任宇琛), Linyu Chen(陈霖宇), Ci Song(宋词), Changzhao Li(李长昭), Chao Zhang(张超), Degang Xu(徐德刚), Jianquan Yao(姚建铨). Chin. Phys. B, 2018, 27(11): 114204.
[2] Sub-Rayleigh imaging via undersampling scanning based on sparsity constraints
Chang-Bin Xue(薛长斌), Xu-Ri Yao(姚旭日), Long-Zhen Li(李龙珍), Xue-Feng Liu(刘雪峰), Wen-Kai Yu(俞文凯), Xiao-Yong Guo(郭晓勇), Guang-Jie Zhai(翟光杰), Qing Zhao(赵清). Chin. Phys. B, 2017, 26(2): 024203.
[3] Optimization-based image reconstruction in x-ray computed tomography by sparsity exploitation of local continuity and nonlocal spatial self-similarity
Han-Ming Zhang(张瀚铭), Lin-Yuan Wang(王林元), Lei Li(李磊), Bin Yan(闫镔), Ai-Long Cai(蔡爱龙), Guo-En Hu(胡国恩). Chin. Phys. B, 2016, 25(7): 078701.
[4] Pulse decomposition-based analysis of PAT/TAT error caused by negative lobes in limited-view conditions
Liu Liang-Bing (刘良兵), Tao Chao (陶超), Liu Xiao-Jun (刘晓峻), Li Xian-Li (李先利), Zhang Hai-Tao (张海涛). Chin. Phys. B, 2015, 24(2): 024304.
[5] Image reconstruction based on total-variation minimization and alternating direction method in linear scan computed tomography
Zhang Han-Ming (张瀚铭), Wang Lin-Yuan (王林元), Yan Bin (闫镔), Li Lei (李磊), Xi Xiao-Qi (席晓琦), Lu Li-Zhong (陆利忠). Chin. Phys. B, 2013, 22(7): 078701.
[6] Cone-beam local reconstruction based on Radon inversion transform
Wang Xian-Chao (汪先超), Yan Bin (闫镔), Li Lei (李磊), Hu Guo-En (胡国恩 ). Chin. Phys. B, 2012, 21(11): 118702.
[7] A Compton scattering image reconstruction algorithm based on total variation minimization
Li Shou-Peng (李守鹏), Wang Lin-Yuan (王林元), Yan Bin (闫镔), Li Lei (李磊), Liu Yong-Jun (刘拥军). Chin. Phys. B, 2012, 21(10): 108703.
[8] An algorithm for computed tomography image reconstruction from limited-view projections
Wang Lin-Yuan(王林元), Li Lei(李磊), Yan Bin(闫镔), Jiang Cheng-Shun(江成顺), Wang Hao-Yu(王浩宇), and Bao Shang-Lian(包尚联). Chin. Phys. B, 2010, 19(8): 088106.
No Suggested Reading articles found!