Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(4): 044302    DOI: 10.1088/1674-1056/28/4/044302
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Influence exerted by bone-containing target body on thermoacoustic imaging with current injection

Yan-Hong Li(李艳红)1,2, Guo-Qiang Liu(刘国强)1,2, Jia-Xiang Song(宋佳祥)1,2, Hui Xia(夏慧)1
1 Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190, China;
2 University of Chinese Academy of Sciences, Beijing 100049, China
Abstract  

Thermoacoustic imaging with current injection (TAI-CI) is a novel imaging technology that couples with electromagnetic and acoustic research, which combines the advantages of high contrast of the electrical impedance tomography and the high spatial resolution of sonography, and therefore has the potential for early diagnosis. To verify the feasibility of TAI-CI for complex bone-containing biological tissues, the principle of TAI-CI and the coupling characteristics of fluid and solid were analyzed. Meanwhile, thermoacoustic (TA) effects for fluid model and fluid-solid coupling model were analyzed by numerical simulations. Moreover, we conducted experiments on animal cartilage, hard bone and biological soft tissue phantom with low conductivity (0.5 S/m). By injecting a current into the phantom, the thermoacoustic signal was detected by the ultrasonic transducer with a center frequency of 1 MHz, thereby the B-scan image of the objects was obtained. The B-scan image of the cartilage experiment accurately reflects the distribution of cartilage and gel, and the hard bone has a certain attenuation effect on the acoustic signal. However, compared with the ultrasonic imaging, the thermoacoustic signal is only attenuated during the outward propagation. Even in this case, a clear image can still be obtained and the images can reflect the change of the conductivity of the gel. This study confirmed the feasibility of TAI-CI for the imaging of biological tissue under the presence of cartilage and the bone. The novel TAI-CI method provides further evidence that it can be used in the diagnosis of human diseases.

Keywords:  biomedical imaging      thermo-acoustic imaging      fluid-solid coupling      low conductivity  
Received:  30 November 2018      Revised:  01 February 2019      Accepted manuscript online: 
PACS:  43.35.Ud (Thermoacoustics, high temperature acoustics, photoacoustic effect)  
  87.85.Pq (Biomedical imaging)  
  43.35.Wa (Biological effects of ultrasound, ultrasonic tomography)  
  44.05.+e (Analytical and numerical techniques)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant No. 51477161), the National Key Research and Development Program of China (Grant No. 2018YFC0115200), and the Fund from the Chinese Academy of Sciences (Grant No. YZ201507).

Corresponding Authors:  Guo-Qiang Liu     E-mail:  gqliu@mail.iee.ac.cn

Cite this article: 

Yan-Hong Li(李艳红), Guo-Qiang Liu(刘国强), Jia-Xiang Song(宋佳祥), Hui Xia(夏慧) Influence exerted by bone-containing target body on thermoacoustic imaging with current injection 2019 Chin. Phys. B 28 044302

[1] Fear E C, Meaney P M and Stuchly M A 2003 IEEE Potentials 22 12
[2] Wang X, Bauer D R, Witte R and Xin H 2012 IEEE Trans. Biomed. Eng. 59 2782
[3] Prakash S, Karnes M P, Sequin E K, West J D, Hitchcock C L, Nichols S D, Bloomston M, Abdel-Misih S R, Schmidt C R, Martin E W Jr, Povoski S P and Subramaniam V V 2015 Physiol. Meas. 36 315
[4] Skourou C, Hoopes P J, Strawbridge R R and Paulsen K D 2004 Physiol. Meas. 25 335
[5] Brindle K 2008 Nat. Rev. Cancer 8 94
[6] Liu G D and Zhang Y R 2011 Acta Phys. Sin. 60 074303 (in Chinese)
[7] Halter R J, Schned A, Heaney J, Hartov A, Schutz S and Paulsen K D 2008 J. Urol. 179 1580
[8] Metherall P, Barber D C, Smallwood R H and Brown B H 1996 Nature 380 509
[9] Halter R J, Hartov A and Paulsen K D 2008 IEEE Trans. Biomed. Eng. 55 650
[10] Wang S H, Tao C and Liu X J 2013 Chin. Phys. B 22 074303
[11] Cheng R X, Tao C and Liu X J 2015 Chin. Phys. B 24 114301
[12] Murphy E K, Mahara A and Haler R J 2017 IEEE Trans. Med. Imaging 36 892
[13] Wu D, Tao C, Liu X J and Wang X D 2012 Chin. Phys. B 21 014301
[14] Jin X, Li C and Wang L V 2008 Med. Phys. 35 3205
[15] Lou C, Yang S, Ji Z, Chen Q and Xing D 2012 Phys. Rev. Lett. 109 218101
[16] Xu Y and He B 2005 Phys. Med. Biol. 50 5175
[17] Guo G P, Ding H P, Dai S J and Ma Q Y 2017 Chin. Phys. B 26 084301
[18] Guo L, Liu G Q and Xia H 2015 IEEE Trans. Biomed. Eng. 62 2114
[19] Liu G Q, Huang X, Xia H and Wu S Z 2013 Chin. Sci. Bull 58 3600
[20] Xu M and Wang L V 2002 Med. Phys. 29 1661
[21] Liu L B, Tao C, Liu X J, Li X L and Zhang H T 2015 Chin. Phys. B 24 024304
[22] Feng X, Gao F and Zheng Y 2013 Appl. Phys. Lett. 103 083704
[23] Ji Z, Lou C, Yang S and Xing D 2012 Med. Phys. 39 6738
[24] Li Y, Liu G, Xia H, Xia Z and Yang Y 2018 IEEE Trans. Magn. 54 5100604
[25] Yang Y, Xia Z, Li Y, Xia H, Liu G and Yan X 2018 Sci. Sin. Tech. 48 48
[26] Shi Y, Qin H, Yang S and Xing D 2016 Nano Res. 9 3644
[27] Yan B, Qin H, Huang C, Li C, Chen Q and Xing D 2017 Opt. Lett. 42 1253
[28] Zhou W, Chen Z, Yang S and Xing D 2017 Opt. Lett. 42 2145
[29] Feng X, Gao F, Kishor R and Zheng Y 2015 Sci. Res. 5 11489
[30] Chaudhary S S, Mishra R K, Swarup A and Thomas J M 1984 Indian J. Biochem. Biophys. 21 76
[31] Ku G and Wang L V 2000 Med. Phys. 27 1195
[32] Li Y, Liu G, Yang Y and Xia Z 2018 J. Med. Imag. Health. In. 8 134
[33] Xu M, Xu Y and Wang L V 2003 IEEE Trans. Biomed. Eng. 50 1086
[34] Zhigilei L V and Garrison B J 2000 J. Appl. Phys. 88 1281
[35] Nan H and Arbabian A 2017 IEEE Trans. Microw. Theory Techn. 65 2607
[36] Omar M, Kellnberger S, Sergiadis G, Razansky D and Ntziachristos V 2012 Med. Phys. 39 4460
[37] Gabriel S, Lau R W and Gabriel C 1996 Phys. Med. Biol. 41 2251
[38] Gabriel S, Lau R W and Gabriel C 1996 Phys. Med. Biol. 41 2271
[39] Kellnberger S, Hajiaboli A, Razansky D and Ntziachristos V 2011 Phys. Med. Biol. 56 3433
[40] Hu G, Li X and He B 2010 Appl. Phys. Lett. 97 103705
[41] Joines W T, Zhang Y, Li C and Jirtle R L 1994 Med. Phys. 21 547
[42] Cheng Y and Fu M 2018 Med. Sci. Monit. 24 1276
[43] Wan Y, Borsic A, Heaney J, Seigne J, Schned A, Baker M, Wason S, Hartov A and Halter R 2013 Med. Phys. 40 063102
[1] Wideband frequency-dependent dielectric properties of rat tissues exposed to low-intensity focused ultrasound in the microwave frequency range
Xue Wang(王雪), Shi-Xie Jiang, Lin Huang(黄林), Zi-Hui Chi(迟子惠), Dan Wu(吴丹), and Hua-Bei Jiang. Chin. Phys. B, 2023, 32(3): 034305.
[2] Non-invasive and low-artifact in vivo brain imaging by using a scanning acoustic-photoacoustic dual mode microscopy
Wentian Chen(陈文天), Chao Tao(陶超), Zizhong Hu(胡仔仲), Songtao Yuan(袁松涛), Qinghuai Liu(刘庆淮), and Xiaojun Liu(刘晓峻). Chin. Phys. B, 2022, 31(4): 044304.
[3] Synthetical optimization of the structure dimension for the thermoacoustic regenerator
Huifang Kang(康慧芳), Lingxiao Zhang(张凌霄), Jun Shen(沈俊),Xiachen Ding(丁夏琛), Zhenxing Li(李振兴), and Jun Liu(刘俊). Chin. Phys. B, 2022, 31(3): 034301.
[4] Deep learning for image reconstruction in thermoacoustic tomography
Qiwen Xu(徐启文), Zhu Zheng(郑铸), and Huabei Jiang(蒋华北). Chin. Phys. B, 2022, 31(2): 024302.
[5] Thermoacoustic assessment of hematocrit changes in human forearms
Xue Wang(王雪), Rui Zhao(赵芮), Yi-Tong Peng(彭亦童), Zi-Hui Chi(迟子惠), Zhu Zheng(郑铸), En Li(李恩), Lin Huang(黄林), and Hua-Bei Jiang(蒋华北). Chin. Phys. B, 2021, 30(9): 094302.
[6] High-contrast imaging based on wavefront shaping to improve low signal-to-noise ratio photoacoustic signals using superpixel method
Xinjing Lv(吕新晶), Xinyu Xu(徐新羽), Qi Feng(冯祺), Bin Zhang(张彬), Yingchun Ding(丁迎春), Qiang Liu(柳强). Chin. Phys. B, 2020, 29(3): 034301.
[7] Enhancement of photoacoustic tomography in the tissue with speed-of-sound variance using ultrasound computed tomography
Cheng Ren-Xiang (程任翔), Tao Chao (陶超), Liu Xiao-Jun (刘晓峻). Chin. Phys. B, 2015, 24(11): 114301.
[8] Nonlinear impedances of thermoacoustic stacks with ordered and disordered structures
Ge Huan (葛欢), Fan Li (范理), Xia Jie (夏洁), Zhang Shu-Yi (张淑仪), Tao Sha (陶莎), Yang Yue-Tao (杨跃涛), Zhang Hui (张辉). Chin. Phys. B, 2014, 23(7): 074301.
[9] Effects of size and arrangement of virtual transducer on photoacoustic tomography
Wang Shao-Hua (王少华), Tao Chao (陶超), Liu Xiao-Jun (刘晓峻). Chin. Phys. B, 2013, 22(7): 074303.
[10] Influence of limited-view scanning on depth imaging of photoacoustic tomography
Wu Dan(吴丹), Tao Chao(陶超), Liu Xiao-Jun(刘晓峻), and Wang Xue-Ding(王学鼎) . Chin. Phys. B, 2012, 21(1): 014301.
[11] Effects of vapour bubbles on acoustic and temperature distributions of therapeutic ultrasound
Fan Ting-Bo(范庭波), Zhang Dong(章东), Zhang Zhe(张喆), Ma Yong(马勇), and Gong Xiu-Fen(龚秀芬). Chin. Phys. B, 2008, 17(9): 3372-3377.
No Suggested Reading articles found!