Please wait a minute...
Chin. Phys. B, 2026, Vol. 35(1): 010505    DOI: 10.1088/1674-1056/ae1456
SPECIAL TOPIC — Biophysical circuits: Modeling & applications in neuroscience Prev   Next  

Synchronization of neuromorphic memristive Josephson junction network and its application

Dejun Yan(严德军)1, Fuqiang Wu(吴富强)1,2,†, and Wenshuai Wang(汪文帅)1
1 School of Mathematics and Statistics, Ningxia University, Yinchuan 750021, China;
2 Ningxia Basic Science Research Center of Mathematics, Yinchuan 750021, China
Abstract  Neuromorphic circuits based on superconducting tunnel junctions have attracted much attention due to their high-speed computing capabilities and low energy consumption. Josephson junction circuits can effectively mimic biological neural dynamics. Leveraging these advantages, we construct a Josephson junction neuron-like model with a phase-dependent dissipative current, referred to as a memristive current. The proposed memristive Josephson junction model exhibits complex dynamical behaviors. Furthermore, considering the effect of a fast-modulated synapse, we explore synchronization phenomena in coupled networks under varying coupling conductances and excitatory/inhibitory interactions. Finally, we extend the neuromorphic Josephson junction model—exhibiting complex dynamics—to the field of image encryption. These results not only enrich the understanding of the dynamical characteristics of memristive Josephson junctions but also provide a theoretical basis and technical support for the development of new neural networks and their applications in information security technology.
Keywords:  nonlinear dynamics      memristive Josephson junction      synchronization      image encryption  
Received:  12 September 2025      Revised:  14 October 2025      Accepted manuscript online:  17 October 2025
PACS:  05.45.Pq (Numerical simulations of chaotic systems)  
  05.45.Gg (Control of chaos, applications of chaos)  
  05.45.Xt (Synchronization; coupled oscillators)  
Fund: The authors sincerely thank the editor, anonymous reviewers, and Huimin Qi for their valuable comments and suggestions that greatly improved this work. This research was supported by the National Natural Science Foundation of China (Grant No. 12302070), the Natural Science Foundation of Ningxia (Grant No. 2024AAC05002), the Youth Science and Technology Talent Cultivation Project of Ningxia, and the Ningxia Science and Technology Leading Talent Training Program (Grant No. 2022GKLRLX04).
Corresponding Authors:  Fuqiang Wu     E-mail:  alexwutian@nxu.edu.cn

Cite this article: 

Dejun Yan(严德军), Fuqiang Wu(吴富强), and Wenshuai Wang(汪文帅) Synchronization of neuromorphic memristive Josephson junction network and its application 2026 Chin. Phys. B 35 010505

[1] Ma J 2023 J. Zhejiang Univ. Sci. A 24 109
[2] Lei Z and Ma J 2025 Chaos 35 023158
[3] Jia J, Yang F and Ma J 2023 Chaos Soliton Fract. 173 113689
[4] Feng X, Kang T and Wu F 2025 Nonlinear Dyn. 113 13727
[5] Wan J, Wu F, Ma J and Wang W 2024 Chinese Phys. B 33 050504
[6] Ge M, Jia Y, Xu Y and Yang L 2018 Nonlinear Dyn. 91 515
[7] Zhang Y, Xu Y, Yao Z and Ma J 2020 Nonlinear Dyn. 102 1849
[8] Qi H, Li F, Wang Q and Wu F 2025 Chaos Solitons Fract. 199 116780
[9] Wu F and Wang R 2023 Commun. Nonlinear Sci. 126 107459
[10] Wu F, Hu X and Ma J 2022 Appl. Math. Comput. 432 127366
[11] Wu F, Gu H and Jia Y 2021 Chaos Soliton Fract. 153 111611
[12] An X and Qiao S 2021 Chaos, Soliton Fract. 143 110587
[13] Li K, Bao H, Li H, Ma J, Hua Z and Bao B 2022 IEEE T. Ind. Inf. 18 1726
[14] Shao Y, Wu F and Wang Q 2024 Nonlinear Dyn. 112 13483
[15] Shao Y, Wu F and Wang Q 2025 Math. Comput. Simulat. 233 99
[16] Xu Q, Fang Y, Feng C, Parastesh F, Chen M andWang N 2024 Nonlinear Dyn. 112 13451
[17] Shao Y, Wu F and Wang Q 2025 Nonlinear Dyn.
[18] Tian X, Wu F and Ma J 2025 Chaos Soliton Fract. 199 116828
[19] Josephson B D 1962 Phys. Lett. 1 251
[20] Schegolev A E, Klenov N V, Gubochkin G I, Kupriyanov M Yu and Soloviev I I 2023 Nanomaterials 13 2101
[21] Zhou J and Chen J 2021 Adv. Elect. Materials 7 2100465
[22] Hens C, Pal P and Dana S K 2015 Phys. Rev. E 92 022915
[23] Crotty P, Schult D and Segall K 2010 Phys. Rev. E 82 011914
[24] Chalkiadakis D and Hizanidis J 2022 Phys. Rev. E 106 044206
[25] Peotta S and Di Ventra M 2014 Phys. Rev. Appl. 2 034011
[26] Wu F, Meng H and Ma J 2024 Neural Networks 169 607
[27] Wu F, Guo Y, Ma J and Jin W 2023 Appl. Math. Comput. 455 128131
[28] Wu F and Yao Z 2023 Nonlinear Dyn 111 13481
[29] Zhang G, Wu F, Hayat T and Ma J 2018 Commun. Nonlinear Sci. 65 79
[30] Yang F, Ma J and Ren G 2024 J. Theor. Biol. 578 111686
[31] Hongray T, Balakrishnan J and Dana S K 2015 Chaos 25 123104
[32] Wu F and Feng X 2025 Nonlinear Dyn.
[33] Segall K, LeGro M, Kaplan S, Svitelskiy O, Khadka S, Crotty P and Schult D 2017 Phys. Rev. E 95 032220
[34] Vlasov V and Pikovsky A 2013 Phys. Rev. E 88 022908
[35] Pfeiffer J, Schuster M, Abdumalikov A A and Ustinov A V 2006 Phys. Rev. Lett. 96 034103
[36] Aranson I, Gitterman M and Shapiro B Y 1995 Phys. Rev. B 52 12878
[37] Mishra A, Ghosh S, Kumar Dana S, Kapitaniak T and Hens C 2021 Chaos 31 052101
[38] Domínguez D and Cerdeira H A 1995 Phys. Rev. B 52 513
[39] Zhou T G, Yan S L, Fang L, He M and Zhao X J 2009 Supercond. Sci. Technol. 22 055017
[40] Ma J, Wu F, Ren G and Tang J 2017 Appl. Math. Comput. 298 65
[41] Bao H, Wang Z, Hua Z, Yu X, Xu Q and Bao B 2024 IEEE T. Ind. Inf. 20 4784
[42] Chen M, Luo X, Zhang Y, Wu H, Xu Q and Bao B 2024 IEEE T. Circuits Syst. I 71 781
[43] Zhang G, Ma J, Alsaedi A, Ahmad B and Alzahrani F 2018 Appl. Math. Comput. 321 290
[44] Ramakrishnan B, Nkandeu Kamdeu P Y, Natiq H, Pone J R M, Karthikeyan A, Kingni S T and Tiedeu A 2022 Multimed Tools Appl. 81 23819
[45] Ramakrishnan B, Tsafack N, Kemnang Tsafack A S, Tabekoueng Njitacke Z and Kingni S T 2022 Pramana - J. Phys. 96 175
[46] Somers D and Kopell N 1993 Biol. Cybern. 68 393
[47] Wang X and Zhao M 2021 Opt. Laser Technol. 143 107316
[48] Folifack Signing V R, Fozin Fonzin T and Kountchou M 2021 Circ. Syst. Signal. Pr. 40 4370
[49] Benssalah M, Rhaskali Y and Drouiche K 2021 Multimed Tools Appl. 80 2081
[50] Es-sabry M, Akkad N E, Khrissi L, Satori K, Satori K, El-shafai W, Altameem T and Rathore R S 2024 Egypt. Inform. J. 25 100449
[51] Li Q and Chen L 2024 Multimed Tools Appl. 83 5351
[52] He C, Chen Z, Sun X and L Wang 2023 IEEE Access 11 34163
[53] Ji X, Chen Y, Wang J, et al. 2024 IEEE Internet. Things 11 39941
[54] Ji X, Dong Z, Zhou G, et al. 2024 IEEE T. Syst. Man CyS. 54 5137
[55] Dong Z, Ji X, Wang J, et al. 2023 IEEE T. Consum. Electr. 70 4311
[1] Normal energy and stretch diffusion in a one-dimensional momentum conserving lattice with nonlinear bounded kinetic energy
Hongbin Chen(陈宏斌), Qin-Yi Zhang(张钦奕), Jiahui Wang(王佳惠), Nianbei Li(李念北), and Jie Chen(陈杰). Chin. Phys. B, 2025, 34(9): 094401.
[2] Graph neural networks unveil universal dynamics in directed percolation
Ji-Hui Han(韩继辉), Cheng-Yi Zhang(张程义), Gao-Gao Dong(董高高), Yue-Feng Shi(石月凤), Long-Feng Zhao(赵龙峰), and Yi-Jiang Zou(邹以江). Chin. Phys. B, 2025, 34(8): 080702.
[3] Effects of noise on synchronization in simplicial complexes
Linying Xiang(项林英), Shuwei Yao(姚姝玮), Yining Chen(陈艺宁), Ruitong Yan(闫锐桐), and Ruya Xia(夏儒雅). Chin. Phys. B, 2025, 34(7): 070503.
[4] Optimal synchronization of higher-order Kuramoto model on hypergraphs
Chong-Yang Wang(王重阳), Bi-Yun Ji(季碧芸), and Linyuan Lü(吕琳媛). Chin. Phys. B, 2025, 34(7): 070502.
[5] An enhanced fingerprint template protection scheme based on four-dimensional superchaotic system and dynamic DNA coding
Baiqiang Hu(胡百强), Jiahui Liu(刘嘉辉), and Zhe Liu(刘喆). Chin. Phys. B, 2025, 34(7): 070505.
[6] Synchronous dynamics of robotic arms driven by Chua circuits
Guoping Sun(孙国平), Mingxin Xu(许明鑫), Guoqiang Jin(金国强), and Xufeng Wang(王旭峰). Chin. Phys. B, 2025, 34(6): 060501.
[7] Resonant tunneling diode cellular neural network with memristor coupling and its application in police forensic digital image protection
Fei Yu(余飞), Dan Su(苏丹), Shaoqi He(何邵祁), Yiya Wu(吴亦雅), Shankou Zhang(张善扣), and Huige Yin(尹挥戈). Chin. Phys. B, 2025, 34(5): 050502.
[8] Finite time hybrid synchronization of heterogeneous duplex complex networks via time-varying intermittent control
Cheng-Jun Xie(解成俊) and Xiang-Qing Lu(卢向清). Chin. Phys. B, 2025, 34(4): 040601.
[9] Hybrid image encryption scheme based on hyperchaotic map with spherical attractors
Zhitang Han(韩智堂), Yinghong Cao(曹颖鸿), Santo Banerjee, and Jun Mou(牟俊). Chin. Phys. B, 2025, 34(3): 030503.
[10] Synchronization of a fractional-order chaotic memristive system and its application to secure image transmission
Lamia Chouchane, Hamid Hamiche, Karim Kemih,Ouerdia Megherbi, and Karim Labadi. Chin. Phys. B, 2025, 34(12): 120509.
[11] Memristor-coupled dynamics and synchronization in two bi-neuron Hopfield neural networks
Fangyuan Li(李芳苑), Haigang Tang(唐海刚), Yunzhen Zhang(张云贞), Bocheng Bao(包伯成), Hany Hassanin, and Lianfa Bai(柏连发). Chin. Phys. B, 2025, 34(12): 128701.
[12] Multi-scroll hopfield neural network excited by memristive self-synapses and its application in image encryption
Ting He(何婷), Fei Yu(余飞), Yue Lin(林越), Shaoqi He(何邵祁), Wei Yao(姚卫), Shuo Cai(蔡烁), and Jie jin(金杰). Chin. Phys. B, 2025, 34(12): 120506.
[13] Strain modulated phonon transport in one-dimensional nonlinear lattice with on-site potential
Hongbin Chen(陈宏斌), Nianbei Li(李念北), and Jie Chen(陈杰). Chin. Phys. B, 2025, 34(11): 114401.
[14] Condensation and criticality of eigen microstates of phase fluctuations in Kuramoto model
Ning-Ning Wang(王宁宁), Qing Yao(姚卿), Ying Fan(樊瑛), Zeng-Ru Di(狄增如), and Xiao-Song Chen(陈晓松). Chin. Phys. B, 2025, 34(10): 100501.
[15] Dynamical behavior of ring-star neural networks with small-world characteristics
Minglin Ma(马铭磷), Zhiyi Yuan(袁芷依), Umme Kalsoom, Weizheng Deng(邓为政), and Shaobo He(贺少波). Chin. Phys. B, 2025, 34(10): 100502.
No Suggested Reading articles found!